
1.2 — Meet R
ECON 480 • Econometrics • Fall 2020
Ryan Safner
Assistant Professor of Economics
 safner@hood.edu
 ryansafner/metricsF20
metricsF20.classes.ryansafner.com

mailto:safner@hood.edu
https://github.com/ryansafner/metricsF20
https://metricsf20.classes.ryansafner.com/

Outline

Meet R and R Studio

Ways to Use R

Coding Basics

Types of R Objects

Data Structures

Working with Objects

Working with Data

Data Science
You go into data analysis with the tools you know, not the tools you need

The next 2-3 weeks are all about giving you the tools you need

Admittedly, a bit before you know what you need them for

We will extend them as we learn specific models

Why Not Excel? I

Why Not Excel? II

Free and open source

A very large community

Written by statisticians for statistics
Most packages are written for R first

Can handle virtually any data format

Makes replication easy

Can integrate into documents (with R
markdown)

R is a language so it can do everything

Why Use R?

Excel and Stata Can't Do This (In Slides)

library("gapminder")

ggplot(data = gapminder,
 aes(x = gdpPercap,
 y = lifeExp,
 color = continent))+
 geom_point(alpha=0.3)+
 geom_smooth(method = "lm")+
 scale_x_log10(breaks=c(1000,10000,
 label=scales::dollar
 labs(x = "GDP/Capita",
 y = "Life Expectancy (Years)"
 facet_wrap(~continent)+
 guides(color = F)+
 theme_light()

Code
 library(gapminder)

The average GDP per capita is $`r
round(mean(gapminder$gdpPercap),2)`
with a standard deviation of $`r
round(sd(gapminder$gdpPercap),2)`
.

Output
The average GDP per capita is $7215.33 with a
standard deviation of $9857.45.

Or This: Execute R Code Inside Your Documents

Meet R and R Studio

R is the programming language that executes
commands

R Studio is an integrated development
environment (IDE) that makes your coding life a
lot easier

Write code in scripts
Execute individual commands or entire
scripts
Auto-complete, highlight syntax
View data, objects, and plots
Get help and documentation on commands
and functions
Integrate code into documents with R
Markdown

R Studio

R and R Studio I

R is like your car's engine, R Studio is the
dashboard

You will do everything in R Studio

R itself is just a command language (you
could run it in your computer's
shell/terminal/command prompt)

R Studio

R and R Studio II

R Studio has 4 window panes:

�. Source1: a text editor for documents, R
scripts, etc.

�. Console: type in commands to run
�. Browser: view files, plots, help, etc
�. Environment: view created objects,

command history, version control

R Studio

R and R Studio III

1May not be immediately visible until you create new files.

You don't “learn R”, you learn how to do
things in R

In order to do learn this, you need to
learn how to search for what you want to
do

Jesse Mostipak
@kierisi

My #rstats learning path:

1. Install R
2. Install RStudio
3. Google "How do I [THING I WANT TO DO] in R?"

Repeat step 3 ad infinitum.
9�19 AM · Aug 18, 2017

2.5K 766 people are Tweeting about this

Katie Mack
@AstroKatie

A surprisingly large part of having expertise in a topic is
not so much knowing everything about it but learning the
language and sources well enough to be extremely
efficient in google searches.
11�34 AM · Dec 8, 2018

15K 3.8K people are Tweeting about this

Learning...

https://twitter.com/kierisi?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E898534740051062785%7Ctwgr%5E&ref_url=https%3A%2F%2Fmetricsf20.classes.ryansafner.com%2Fslides%2F1.2-slides.html
https://twitter.com/kierisi?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E898534740051062785%7Ctwgr%5E&ref_url=https%3A%2F%2Fmetricsf20.classes.ryansafner.com%2Fslides%2F1.2-slides.html
https://twitter.com/kierisi/status/898534740051062785?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E898534740051062785%7Ctwgr%5E&ref_url=https%3A%2F%2Fmetricsf20.classes.ryansafner.com%2Fslides%2F1.2-slides.html
https://twitter.com/hashtag/rstats?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E898534740051062785%7Ctwgr%5E&ref_url=https%3A%2F%2Fmetricsf20.classes.ryansafner.com%2Fslides%2F1.2-slides.html&src=hashtag_click
https://twitter.com/kierisi/status/898534740051062785?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E898534740051062785%7Ctwgr%5E&ref_url=https%3A%2F%2Fmetricsf20.classes.ryansafner.com%2Fslides%2F1.2-slides.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E898534740051062785%7Ctwgr%5E&ref_url=https%3A%2F%2Fmetricsf20.classes.ryansafner.com%2Fslides%2F1.2-slides.html&tweet_id=898534740051062785
https://twitter.com/kierisi/status/898534740051062785?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E898534740051062785%7Ctwgr%5E&ref_url=https%3A%2F%2Fmetricsf20.classes.ryansafner.com%2Fslides%2F1.2-slides.html
https://twitter.com/AstroKatie?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1071442842873159681%7Ctwgr%5E&ref_url=https%3A%2F%2Fmetricsf20.classes.ryansafner.com%2Fslides%2F1.2-slides.html
https://twitter.com/AstroKatie?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1071442842873159681%7Ctwgr%5E&ref_url=https%3A%2F%2Fmetricsf20.classes.ryansafner.com%2Fslides%2F1.2-slides.html
https://twitter.com/AstroKatie/status/1071442842873159681?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1071442842873159681%7Ctwgr%5E&ref_url=https%3A%2F%2Fmetricsf20.classes.ryansafner.com%2Fslides%2F1.2-slides.html
https://twitter.com/AstroKatie/status/1071442842873159681?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1071442842873159681%7Ctwgr%5E&ref_url=https%3A%2F%2Fmetricsf20.classes.ryansafner.com%2Fslides%2F1.2-slides.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1071442842873159681%7Ctwgr%5E&ref_url=https%3A%2F%2Fmetricsf20.classes.ryansafner.com%2Fslides%2F1.2-slides.html&tweet_id=1071442842873159681
https://twitter.com/AstroKatie/status/1071442842873159681?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1071442842873159681%7Ctwgr%5E&ref_url=https%3A%2F%2Fmetricsf20.classes.ryansafner.com%2Fslides%2F1.2-slides.html

...and Sucking

Ways to Use R

Type individual commands into the
console window

Great for testing individual commands to
see what happens

Not saved! Not reproducible! Not
recommended!

2+2

[1] 4

summary(mpg$hwy)

Min. 1st Qu. Median Mean 3rd Qu. Max.
12.00 18.00 24.00 23.44 27.00 44.00

1. Using the Console

Type individual commands into the
console window

Great for testing individual commands to
see what happens

Not saved! Not reproducible! Not
recommended!

1. Using the Console

Source pane is a text-editor

Make .R files: all input commands in a
single script

Comment with #

Can run any or all of script at once

Can save, reproduce, and send to others!

2. Writing an R Script

3. Using Markdown
A later lecture: R Markdown , a simple markup language to write documents in

Optional, but many students have enjoyed it and use it well beyond this class!

Can integrate text, R code, figures, citations & bibliographies in a single plain-text file &
output into a variety of formats: PDF, webpage, slides, Word doc, etc.

For Today
Practicing typing at the Command line/Console

Learning different commands and objects relevant for data analysis

Saving and running .R scripts

Later: R markdown , literate programming, workflow management

Today may seem a bit overwhelming

You don't need to know or internalize all of this today
Use this as a reference to come back to over the semester

Coding Basics

Getting to Know Your Computer
R assumes a default (often inconvenient) "working directory" on your computer

The first place it looks to open or save files

Find out where R this is with getwd()

Change it with setwd(path/to/folder) 1

Soon I'll show you better ways where you won't ever have to worry about this

1 Note the path is OS-specific. For Windows it might be C:/Documents/ . For Mac it is often your username
folder.

Hadley Wickham

Chief Scientist, R Studio

"There’s an implied contract between you and R: it will
do the tedious computation for you, but in return, you
must be completely precise in your instructions. Typos
matter. Case matters." - R for Data Science, Ch. 4

Coding

https://r4ds.had.co.nz/workflow-basics.html

Say Hello to My Little Friend

Say Hello to My Better Friend

R Is Helpful Too!
type help(function_name) or ?(function_name) to get documentation on a
function

From Kieran Healy's excellent (free online!) book on Data Visualization.

http://socviz.co/

Tips for Writing Code
Comment, comment, comment!
The hashtag # starts a comment, R will ignore everything on the rest of that line

Run regression of y on x, save as reg1
reg1<-lm(y~x, data=data) #runs regression
summary(reg1$coefficients) #prints coefficients

Save often!
Write scripts that save the commands that did what you wanted (and comment them!)
Better yet, use a version control system like Git (I hope to cover this later)

Style and Naming
Once we start writing longer blocks of code, it helps to have a consistent (and human-readable!)
style

I follow this style guide (you are not required to)1

Naming objects and files will become important2

DO NOT USE SPACES! You've seen seen webpages intended to be called my webpage in
html turned into http://my%20webpage%20in%20html.html

i_use_underscores
some.people.use.snake.case
othersUseCamelCase
1 Also described in today's course notes page and the course reference page.

2 Consider your folders on your computer as well...

https://adv-r.had.co.nz/Style.html
http://metricsf20.classes.ryansafner.com/class/1.2-class/
http://metricsf20.classes.ryansafner.com/reference

Coding Basics
You'll have to get used to the fact that you are coding in commands to execute

Start with the easiest: simple math operators and calculations:

> 2+2

[1] 4

Note that R will ask for input with > and give you output starting with ## [1]

Coding Basics II
We can start using more fancy commands

2^3

[1] 8

sqrt(25)

[1] 5

log(6)

[1] 1.791759

pi/2

[1] 1.570796

Since R is open source, users contribute
packages

Really it's just users writing custom
functions and saving them for others to use

Load packages with library()
e.g. library("package_name")

If you don't have a package, you must first
install.packages() 1

e.g.
install.packages("package_name")

Packages

1 Yes, note the plural, even if it's just for one package!

R is an object-oriented programming
language
99% of the time, you will be:

�. creating objects

assign values to an object with = (or
<-)

�. running functions on objects

syntax:
function_name(object_name)

make an object
my_object = -c(1,2,3,4,5)

look at it
my_object

[1] -1 -2 -3 -4 -5

find the sum
sum(my_object)

[1] -15

find the mean
mean(my_object)

[1] -3

R: Objects and Functions

Functions have "arguments," the input(s)

Some functions may have multiple inputs

The argument of a function can be
another function!

find the sd
sd(my_object)

[1] 1.581139

[1] -1 -2 -3 -4 -5

round the sd to two decimals
round(sd(my_object),2)

[1] 1.58

R: Objects and Functions II

round everything in my object to two decimals
round(my_object,2)

Types of R Objects

Numeric objects are just numbers1

Can be mathematically manipulated

x = 2
y = 3
x+y

[1] 5

x*y

[1] 6

Numeric

1 If you want to get technical, R may call these integer or double if there are decimal values.

Character objects are "strings" of text
held inside quote marks

Can contain spaces, so long as contained
within quote marks

name = "Ryan Safner"
address = "Washington D.C."

name

[1] "Ryan Safner"

address

[1] "Washington D.C."

Character

Logical objects are binary TRUE or FALSE
indicators
Used a lot to evaluate conditionals:

> , < : greater than, less than
>= , <= : greater than or equal to, less than
or equal to
== , != : is equal to, is not equal to1

&in& : Is a member of the set of (\in)
& : "AND"
| : "OR"

z = 10 # set z equal to 10

z==10 # is z equal to 10?

[1] TRUE

"red"=="blue" # is red equal to blue?

[1] FALSE

z > 1 & z < 12 # is z > 1 AND < 12?

[1] TRUE

z <= 1 | z==10 # is z >= 1 OR equal to 10?

[1] TRUE

Logical

1 One = assigns a value (like <-). Two == evaluate a conditional statement.

Factor
Factor objects contain categorical data - membership in mutually exclusive groups

Look like strings, behave more like logicals, but with more than two options

[1] senior freshman senior sophomore sophomore junior junior
[8] freshman freshman senior
Levels: freshman sophomore junior senior

We'll make much more extensive use of them later

[1] senior freshman senior sophomore sophomore junior junior
[8] freshman freshman senior
Levels: freshman < sophomore < junior < senior

Data Structures

Vector : the simplest type of object,
just a collection of objects

Make a vector using the combine c()
function

create a vector called vec
vec = c(1,"orange", 83.5, pi)

look at vec
vec

[1] "1" "orange" "83.5"

Vectors

Data frame : what we'll be using
almost always

Think like a "spreadsheet"

Each column is a vector (variable)

Each row is an observation (pair of values
for all variables)

library("ggplot2")

diamonds

A tibble: 53,940 x 10
carat cut color clarity depth table price
<dbl> <ord> <ord> <ord> <dbl> <dbl> <int>
1 0.23 Ideal E SI2 61.5 55 326
2 0.21 Premium E SI1 59.8 61 326
3 0.23 Good E VS1 56.9 65 327
4 0.290 Premium I VS2 62.4 58 334
5 0.31 Good J SI2 63.3 58 335
6 0.24 Very Good J VVS2 62.8 57 336
7 0.24 Very Good I VVS1 62.3 57 336
8 0.26 Very Good H SI1 61.9 55 337
9 0.22 Fair E VS2 65.1 61 337
10 0.23 Very Good H VS1 59.4 61 338
… with 53,930 more rows

Data Frames I

Dataframes are really just combinations
of (column) vectors

You can make data frames by
combinining named vectors with
data.frame() or creating each
column/vector in each argument

fruits numbers
1 apple 3.3
2 orange 2.0
3 pear 6.1
4 kiwi 7.5
5 pineapple 4.2

Data Frames II

make two vectors
fruits = c("apple","orange","pear","kiwi","pine
numbers = c(3.3,2.0,6.1,7.5,4.2)

combine into dataframe
df = data.frame(fruits,numbers)

do it all in one step (note the = instead of
df = data.frame(fruits=c("apple","orange","pear
 numbers=c(3.3,2.0,6.1,7.5,4.2))

look at it
df

Working with Objects

Objects: Storing, Viewing, and Overwriting
We want to store things in objects to run functions on them later
Recall, any object is created with the assignment operator <-

my_vector = c(1,2,3,4,5)

R will not give any output after an assignment

Objects: Storing, Viewing, and Overwriting
View an object (and list its contents) by typing its name

my_vector

[1] 1 2 3 4 5

objects maintain their values until they are assigned different values that will overwrite the
object

my_vector = c(2,7,9,1,5)
my_vector

[1] 2 7 9 1 5

Objects: Checking and Changing Classes
Check what type of object something is with class()

class("six")

[1] "character"

class(6)

[1] "numeric"

Can also use logical tests of is.()

is.numeric("six")

[1] FALSE

is.character("six")

Objects: Checking and Changing Classes
Convert objects from one class to another with as.object_class()

Pay attention: you can't convert non-numbers to numeric , etc!

as.character(6)

[1] "6"

as.numeric("six")

[1] NA

Objects: Different Classes and Coercion I
Different types of objects have different rules about mixing classes
Vectors can not contain different types of data

Different types of data will be "coerced" into the lowest-common denominator type of
object

mixed_vector = c(pi, 12, "apple", 6.32)
class(mixed_vector)

[1] "character"

mixed_vector

[1] "3.14159265358979" "12" "apple" "6.32"

df

fruits numbers
1 apple 3.3
2 orange 2.0
3 pear 6.1
4 kiwi 7.5
5 pineapple 4.2

class(df$fruits)

[1] "character"

class(df$numbers)

[1] "numeric"

Objects: Different Classes and Coercion II
Data frames can have columns with different types of data, so long as all the elements in
each column are the same class1

1Remember each column in a data frame is a vector!

More on Data Frames I
Learn more about a data frame with the str() command to view its structure

class(df)

[1] "data.frame"

str(df)

'data.frame': 5 obs. of 2 variables:
$ fruits : chr "apple" "orange" "pear" "kiwi" ...
$ numbers: num 3.3 2 6.1 7.5 4.2

More on Data Frames II
Take a look at the first 5 (or n) rows with head()

head(df)

fruits numbers
1 apple 3.3
2 orange 2.0
3 pear 6.1
4 kiwi 7.5
5 pineapple 4.2

head(df, n=2)

fruits numbers
1 apple 3.3
2 orange 2.0

More on Data Frames III

Get summary statistics1 by column (variable) with summary()

summary(df)

fruits numbers
Length:5 Min. :2.00
Class :character 1st Qu.:3.30
Mode :character Median :4.20
Mean :4.62
3rd Qu.:6.10
Max. :7.50

1 For numeric data only; a frequency table is displayed for character or factor data

More on Data Frames IV
Note, once you save an object, it shows up in the Environment Pane in the upper right
window
Click the blue arrow button in front of the object for some more information

More on Data Frames V
data.frame objects can be viewed in their own panel by clicking on the name of the
object
Note you cannot edit anything in this pane, it is for viewing only

Functions Again I
Functions in R are vectorized, meaning running a function on a vector applies it to each
element

my_vector = c(2,4,5,10)
my_vector+4 # add 4 to all elements

[1] 6 8 9 14

my_vector^2 # square all elements

[1] 4 16 25 100

Functions Again II
But often we want to run functions on vectors that aggregate to a result (e.g. a statistic):

length(my_vector) # how many elements

[1] 4

sum(my_vector) # add all elements

[1] 21

max(my_vector) # find largest element

[1] 10

min(my_vector) # find smallest element

[1] 2

Common Errors
If you make a coding error (e.g. forget to close a parenthesis), R might show a + sign waiting
for you to finish the command

> 2+(2*3
+

Either finish the command-- e.g. add) --or hit Esc to cancel

Working with Data

mtcars

mpg cyl disp hp drat wt qsec
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02
Valiant 18.1 6 225.0 105 2.76 3.460 20.22
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40

Each element in a data frame is indexed by
referring to its row and column: df[r,c]
To select elements by row and column
("subset"), type in the row(s) and/or column(s)
to select

Leaving r or c blank selects all rows or
columns
Select multiple values with c() 1

Select a range of values with :
Don't forget the comma between r and c !

Indexing and Subsetting I

1 You can also "negate" values, selecting everything
except for values with a - in front of them.

mtcars

mpg cyl disp hp drat wt qsec
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02
Valiant 18.1 6 225.0 105 2.76 3.460 20.22
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40

Subset by Row (Observations)

mtcars[1,] # first row

mpg cyl disp hp drat wt qsec
Mazda RX4 21 6 160 110 3.9 2.62 16.46

mtcars[c(1,3,4),] # first, third, and fourth rows

mpg cyl disp hp drat wt qsec
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46
Datsun 710 22.8 4 108 93 3.85 2.320 18.61
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44

mtcars[1:3,] # first three rows

mpg cyl disp hp drat wt qsec
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46

Indexing and Subsetting II

mtcars

mpg cyl disp hp drat wt qsec
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02
Valiant 18.1 6 225.0 105 2.76 3.460 20.22
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40

Subset by Column (Variable)

mtcars[,6] # select column 6

[1] 2.620 2.875 2.320 3.215 3.440 3.460 3.570 3.190 3

mtcars[,2:4] # select columns 2 through 4

cyl disp hp
Mazda RX4 6 160.0 110
Mazda RX4 Wag 6 160.0 110
Datsun 710 4 108.0 93
Hornet 4 Drive 6 258.0 110
Hornet Sportabout 8 360.0 175
Valiant 6 225.0 105
Duster 360 8 360.0 245
Merc 240D 4 146.7 62
Merc 230 4 140.8 95
Merc 280 6 167.6 123

Indexing and Subsetting III

mtcars

mpg cyl disp hp drat wt qsec
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02
Valiant 18.1 6 225.0 105 2.76 3.460 20.22
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40

Subset by Column (Variable)

Alternatively, double brackets [[]]
selects a column by position

mtcars[[6]] # same thing

[1] 2.620 2.875 2.320 3.215 3.440 3.460 3.570 3.190 3

- Data frames can select columns by *name*
with

mtcars$wt

[1] 2.620 2.875 2.320 3.215 3.440 3.460 3.570 3.190 3

Indexing and Subsetting IV

$

mtcars

mpg cyl disp hp drat wt qsec
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02
Valiant 18.1 6 225.0 105 2.76 3.460 20.22
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40

Select observations (rows) that meet
logical criteria

Subset by Condition

mtcars[mtcars$wt>4,] # select obs with wt>4

mpg cyl disp hp drat wt qsec
Merc 450SE 16.4 8 275.8 180 3.07 4.07 17.4

mpg cyl disp hp drat wt qsec
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44
Valiant 18.1 6 225.0 105 2.76 3.460 20.22
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30

Indexing and Subsetting V

mtcars[mtcars$cyl==6,] # select obs with exactly 6

What's To Come
Next class: data visualization with ggplot2

And then: data wrangling with tidyverse

And then: literate programming and workflow management with R Markdown

Finally: back to econometric theory!

