2.1 - Random Variables \& Distributions

 ECON 480 • Econometrics • Fall 2020 Ryan SafnerAssistant Professor of Economics
, safner@hood.edu
© ryansafner/metricsF20
© metricsF20.classes.ryansafner.com

Random Variables

Experiments

- An experiment is any procedure that can (in principle) be repeated infinitely and has a well-defined set of outcomes

Example: flip a coin 10 times

Random Variables

- A random variable (RV) takes on values that are unknown in advance, but determined by an experiment
- A numerical summary of a random outcome

Example: the number of heads from 10 coin flips

Random Variables: Notation

- Random variable X takes on individual values $\left(x_{i}\right)$ from a set of possible values
- Often capital letters to denote RV's
- lowercase letters for individual values

Example: Let X be the number of Heads from 10 coin flips. $\quad x_{i} \in\{0,1,2, \ldots, 10\}$

Discrete Random Variables

Discrete Random Variables

- A discrete random variable: takes on a finite/countable set of possible values

Example: Let X be the number of times your computer crashes this semester ${ }^{1}$, $x_{i} \in\{0,1,2,3,4\}$

Windows

Windows crashed again. I am the Blue Screen of Death. No one hears your screams.

* Press any key to terminate the application.
* Press CTRL+ALT+DEL again to restart your computer. You will lose any usaved data in all applications.

Press any key to continue

[^0]
Discrete Random Variables: Probability Distribution

- Probability distribution of a R.V. fully lists all the possible values of X and their associated probabilities

Example:

x_{i}	$P\left(X=x_{i}\right)$
0	0.80
1	0.10
2	0.06
3	0.03
4	0.01

Discrete Random Variables: pdf

Probability distribution function (pdf)

summarizes the possible outcomes of X and their probabilities

- Notation: f_{X} is the pdf of X :

$$
f_{X}=p_{i}, \quad i=1,2, \ldots, k
$$

- For any real number $x_{i}, f\left(x_{i}\right)$ is the probablity that $X=x_{i}$

Example:

- What is $f(0)$?
- What is $f(3)$?

Discrete Random Variables: pdf Graph

```
crashes<-tibble(number = c(0,1,2,3,4),
prob = c(0.80, 0.10, 0.06, 0.03, 0.01))
ggplot(data = crashes)+
    aes(x = number,
        y = prob)+
    geom_col(fill="#0072B2")+
    labs(x = "Number of Crashes",
        y = "Probability")+
        theme_classic(base_family = "Fira Sans Condensed",
        base_size=20)
```


Discrete Random Variables: cdf

Cumulative distribution function (pdf) lists probability X will be at most (less than or equal to) a given value x_{i}

- Notation: $F_{X}=P\left(X \leq x_{i}\right)$

Example:

$$
\begin{array}{c|c|c}
\hline x_{i} & f(x) & F(x) \\
\hline 0 & 0.80 & 0.80 \\
1 & 0.10 & 0.90 \\
2 & 0.06 & 0.96 \\
3 & 0.03 & 0.99 \\
4 & 0.01 & 1.00
\end{array}
$$

- What is the probability your computer will crash at most once, $F(1)$?
- What about three times, $F(3)$?

Discrete Random Variables: cdf Graph

crashes<-crashes \%>\% mutate(cum_prob = cumsum(prob))
crashes

\#\# \# A tibble: 5×3			
\#\#	number	prob cum_prob	
\#\#	<dbl>	<dbl>	<dbl>
\#\#	1	0	0.8
\#\# 2	1	0.1	0.8
\#\# 3	2	0.06	0.9
\#\#	4	3	0.03

```
ggplot(data = crashes)+
    aes(x = number,
        y = cum_prob)+
    geom_col(fill="#0072B2")+
    labs(x = "Number of Crashes",
        y = "Probability")+
        theme_classic(base_family = "Fira Sans Condensed",
            base_size=20)
```


Expected Value and Variance

Expected Value of a Random Variable

- Expected value of a random variable X, written $E(X)$ (and sometimes μ), is the long-run average value of X "expected" after many repetitions

$$
E(X)=\sum_{i=1}^{k} p_{i} x_{i}
$$

- $E(X)=p_{1} x_{1}+p_{2} x_{2}+\cdots+p_{k} x_{k}$
- A probability-weighted average of X, with each x_{i} weighted by its associated probability p_{i}
- Also called the "mean" or "expectation" of X, always denoted either $E(X)$ or μ_{X}

Expected Value: Example I

Example: Suppose you lend your friend $\$ 100$ at 10% interest. If the loan is repaid, you receive $\$ 110$. You estimate that your friend is 99% likely to repay, but there is a default risk of 1% where you get nothing. What is the expected value of repayment?

Expected Value: Example II

Example:

Let X be a random variable that is described by the following pdf:

$$
\begin{array}{l|l}
\hline x_{i} & P\left(X=x_{i}\right) \\
\hline 1 & 0.50 \\
2 & 0.25 \\
3 & 0.15 \\
4 & 0.10
\end{array}
$$

Calculate $E(X)$.

The Steps to Calculate E(X), Coded

```
# Make a Random Variable called X
X<-tibble(x_i=c(1,2,3,4), # values of X
    p_i=c(0.50,0.25,0.15,0.10)) # probabilities
X %>%
    summarize(expected_value = sum(x_i*p_i))
## # A tibble: 1 x 1
## expected_value
## <dbl>
## 1 1.85
```


Variance of a Random Variable

- The variance of a random variable X, denoted $\operatorname{var}(X)$ or σ_{X}^{2} is:

$$
\begin{aligned}
\sigma_{X}^{2} & =E\left[\left(x_{i}-\mu_{X}\right)^{2}\right] \\
& =\sum_{i=1}^{n}\left(x_{i}-\mu_{X}\right)^{2} p_{i}
\end{aligned}
$$

- This is the expected value of the squared deviations from the mean
- i.e. the probability-weighted average of the squared deviations

Standard Deviation of a Random Variable

- The standard deviation of a random variable X, denoted $s d(X)$ or σ_{X} is:

$$
\sigma_{X}=\sqrt{\sigma_{X}^{2}}
$$

Standard Deviation: Example I

Example: What is the standard deviation of computer crashes?

$$
\begin{array}{ll}
x_{i} & P\left(X=x_{i}\right) \\
\hline 0 & 0.80 \\
1 & 0.10 \\
2 & 0.06 \\
3 & 0.03 \\
4 & 0.01
\end{array}
$$

The Steps to Calculate sd(X), Coded I

```
# get the expected value
crashes %>%
    summarize(expected_value = sum(number*prob))
## # A tibble: 1 x 1
## expected_value
## <dbl>
## 1 0.35
# save this for quick use
exp_value<-0.35
crashes_2 <- crashes %>%
    select(-cum_prob) %>% # we don't need the cdf
    # create new columns
    mutate(deviations = number - exp_value, # deviations from exp_value
            deviations_sq = deviations^2,
            weighted_devs_sq = prob * deviations^2) # square deviations
```


The Steps to Calculate sd(X), Coded II

```
# look at what we made
crashes_2
```

\#\# \# A tibble: 5 x 5
\#\# number prob deviations deviations_sq weighted_devs_sq

\#\#	<dbl>	$\langle\mathrm{dbl}\rangle$	$\langle\mathrm{dbl}\rangle$	$\langle\mathrm{dbl}\rangle$	$\langle\mathrm{dbl}\rangle$
\#\# 1	0	0.8	-0.35	0.122	0.0980
\#\# 2	1	0.1	0.65	0.423	0.0423
\#\# 3	2	0.06	1.65	2.72	0.163
\#\# 4	3	0.03	2.65	7.02	0.211
\#\# 5	4	0.01	3.65	13.3	0.133

The Steps to Calculate sd(X), Coded III

```
# now we want to take the expected value of the squared deviations to get variance
crashes_2 %>%
    summarize(variance = sum(weighted_devs_sq), # variance
        sd = sqrt(variance)) # sd is square root
```

\#\# \# A tibble: 1 x 2
\#\# variance sd
\#\# <dbl> <dbl>
\#\# 10.6480 .805

Standard Deviation: Example II

Example: What is the standard deviation of the random variable we saw before?

$$
\begin{array}{l|l}
x_{i} & P\left(X=x_{i}\right) \\
\hline 1 & 0.50 \\
2 & 0.25 \\
3 & 0.15 \\
4 & 0.10
\end{array}
$$

Hint: you already found it's expected value.

Continuous Random Variables

Continuous Random Variables

- Continuous random variables can take on an uncountable (infinite) number of values
- So many values that the probability of any specific value is infinitely small:

$$
P\left(X=x_{i}\right) \rightarrow 0
$$

- Instead, we focus on a range of values it might take on

Continuous Random Variables: pdf I

Probability densityfunction (pdf) of a

 continuous variable represents the probability between two values as the area under a curve- The total area under the curve is 1
- Since $P(a)=0$ and $P(b)=0$, $P(a<X<b)=P(a \leq X \leq b)$

Example: $P(0 \leq X \leq 2)$

Continuous Random Variables: pdf II

- FYI using calculus:

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x
$$

- Complicated: software or (old fashioned!) probability tables to calculate

Continuous Random Variables: cdf I

- The cumulative density function (cdf) describes the area under the pdf for all values less than or equal to (i.e. to the left of) a given value, k

$$
P(X \leq k)
$$

Example: $P(X \leq 2)$

Continuous Random Variables: cdf II

- Note: to find the probability of values greater than or equal to (to the right of) a given value k :

$$
P(X \geq k)=1-P(X \leq k)
$$

Example: $P(X \geq 2)=1-P(X \leq 2)$

The Normal Distribution

The Normal Distribution I

- The Gaussian or normal distribution is the most useful type of probability distribution

$$
X \sim N(\mu, \sigma)
$$

- Continuous, symmetric, unimodal, with mean μ and standard deviation σ

The Normal Distribution II

- FYI: The pdf of $X \sim N(\mu, \sigma)$ is

$$
P(X=k)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2}\left(\frac{(k-\mu)}{\sigma}\right)^{2}}
$$

- Do not try and learn this, we have software and (previously tables) to calculate pdfs and cdfs

The 68-95-99.7 Rule

- 68-95-99.7\% empirical rule: for a normal distribution:

The 68-95-99.7 Rule

- 68-95-99.7\% empirical rule: for a normal distribution:
- $P(\mu-1 \sigma \leq X \leq \mu+1 \sigma) \approx 68 \%$

The 68-95-99.7 Rule

- 68-95-99.7\% empirical rule: for a normal distribution:
- $P(\mu-1 \sigma \leq X \leq \mu+1 \sigma) \approx 68 \%$
- $P(\mu-2 \sigma \leq X \leq \mu+2 \sigma) \approx 95 \%$

The 68-95-99.7 Rule

- 68-95-99.7\% empirical rule: for a normal distribution:
- $P(\mu-1 \sigma \leq X \leq \mu+1 \sigma) \approx 68 \%$
- $P(\mu-2 \sigma \leq X \leq \mu+2 \sigma) \approx 95 \%$
- $P(\mu-3 \sigma \leq X \leq \mu+3 \sigma) \approx 99.7 \%$
- 68/95/99.7\% of observations fall within 1/2/3 standard deviations of the mean

The Standard Normal Distribution

- The standard normal distribution (often referred to as \mathbf{Z}) has mean 0 and standard deviation 1

$$
Z \sim N(0,1)
$$

The Standard Normal cdf

- The standard normal cdf

$$
\Phi(k)=P(Z \leq k)
$$

Standardizing Variables

- We can take any normal distribution (for any μ, σ) and standardize it to the standard normal distribution by taking the Z-score of any value, x_{i} :

$$
Z=\frac{x_{i}-\mu}{\sigma}
$$

- Subtract any value by the distribution's mean and divide by standard deviation
- Z: number of standard deviations x_{i} value is away from the mean

Standardizing Variables: Example

Example: On August 8, 2011, the Dow dropped 634.8 points, sending shock waves through the financial community. Assume that during mid-2011 to mid-2012 the daily change for the Dow is normally distributed, with the mean daily change of 1.87 points and a standard deviation of 155.28 points. What is the Z -score?

$$
\begin{gathered}
Z=\frac{X-\mu}{\sigma} \\
Z=\frac{634.8-1.87}{155.28} \\
Z=-4.1
\end{gathered}
$$

This is 4.1 standard deviations (σ) beneath the mean, an extremely low probability event.

Standardizing Variables: From X to Z I

Example: In the last quarter of 2015, a group of 64 mutual funds had a mean return of 2.4% with a standard deviation of 5.6%. These returns can be approximated by a normal distribution.

What percent of the funds would you expect to be earning between -3.2% and 8.0% returns?

Convert to standard normal to find Z-scores for 8 and -3.2 .

$$
\begin{gathered}
P(-3.2<X<8) \\
P\left(\frac{-3.2-2.4}{5.6}<\frac{X-2.4}{5.6}<\frac{8-2.4}{5.6}\right) \\
P(-1<Z<1) \\
P(X \pm 1 \sigma)=0.68
\end{gathered}
$$

Standardizing Variables: From X to Z II

Standardizing Variables: From X to Z III

You Try: In the last quarter of 2015, a group of 64 mutual funds had a mean return of 2.4% with a standard deviation of 5.6\%. These returns can be approximated by a normal distribution.

1. What percent of the funds would you expect to be earning between -3.2% and 8.0% returns?
2. What percent of the funds would you expect to be earning 2.4% or less?
3. What percent of the funds would you expect to be earning between -8.8% and 13.6% ?
4. What percent of the funds would you expect to be earning returns greater than 13.6% ?

Finding Z-score Probabilities I

- How do we actually find the probabilities for Z-scores?

Table of Standard Normal Probabilities for Negative Z-scores

Table of Standard Normal Probabilities for Positive Z-scores

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817

Finding Z-score Probabilities II

Probability to the left of z_{i}

$$
P\left(Z \leq z_{i}\right)=\underbrace{\Phi\left(z_{i}\right)}_{\text {cdf of } z_{i}}
$$

Probability to the right of z_{i}

$$
P\left(Z \geq z_{i}\right)=1-\underbrace{\Phi\left(z_{i}\right)}_{\text {cdf of } z_{i}}
$$

Finding Z-score Probabilities III

Probability between z_{1} and z_{2}

$$
P\left(z_{1} \geq Z \geq z_{2}\right)=\underbrace{\Phi\left(z_{2}\right)}_{\text {cdf of } z_{2}}-\underbrace{\Phi\left(z_{1}\right)}_{\text {cdf of } z_{1}}
$$

Finding Z-score Probabilities IV

- pnorm() calculates p robabilities with a normal distribution with arguments:
- mean = the mean
- $\mathrm{sd}=$ the standard deviation
- lower.tail =
- TRUE if looking at area to LEFT of value
- FALSE if looking at area to RIGHT of value

Finding Z-score Probabilities IV

Example: Let the distribution of grades be normal, with mean 75 and standard deviation 10.

- Probability a student gets at least an 80

```
pnorm(80,
    mean = 75,
    sd = 10,
    lower.tail = FALSE) # looking to right
```

\#\# [1] 0.3085375

Finding Z-score Probabilities V

Example: Let the distribution of grades be normal, with mean 75 and standard deviation 10.

- Probability a student gets at most an 80

```
pnorm(80,
    mean = 75,
    sd = 10,
    lower.tail = TRUE) # looking to left
```

\#\# [1] 0.6914625

Finding Z-score Probabilities VI

Example: Let the distribution of grades be normal, with mean 75 and standard deviation 10.

- Probability a student gets between a 65 and 85

```
# subtract two left tails!
pnorm(85, # larger number first!
        mean = 75,
        sd = 10,
        lower.tail = TRUE) - # looking to left, & SUBTRACT
    pnorm(65, # smaller number second!
        mean = 75,
        sd = 10,
        lower.tail = TRUE) #looking to left
```


[^0]: ${ }^{1}$ Please, back up your files!

