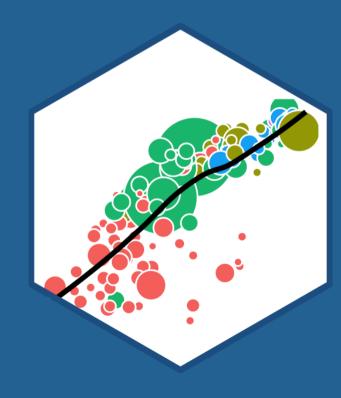
3.3 — Omitted Variable Bias

ECON 480 • Econometrics • Fall 2020

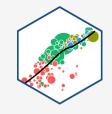
Ryan Safner

Assistant Professor of Economics

- safner@hood.edu
- ryansafner/metricsF20
- metricsF20.classes.ryansafner.com



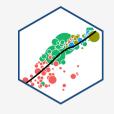
Review: u



$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

- Error term, u_i includes all other variables that affect Y
- Every regression model always has omitted variables assumed in the error
 - Most unobservable (hence "u") or hard to measure
 - Examples: innate ability, weather at the time, etc
- Again, we assume u is random, with E[u|X]=0 and $var(u)=\sigma_u^2$
- *Sometimes*, omission of variables can **bias** OLS estimators $(\hat{eta_0}$ and $\hat{eta_1})$

Omitted Variable Bias I

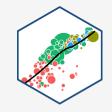


• Omitted variable bias (OVB) for some omitted variable **Z** exists if two conditionsa are met:

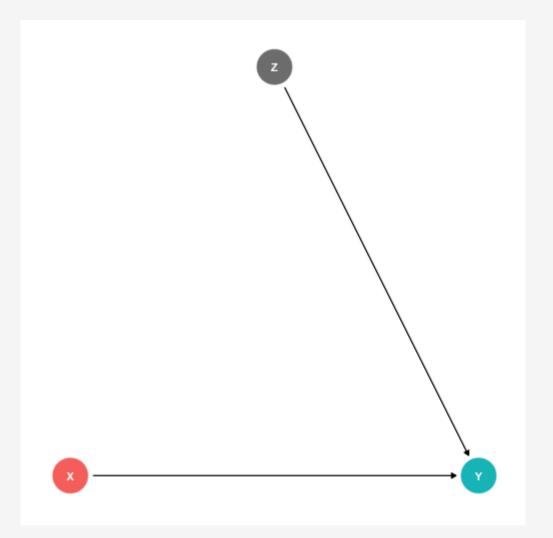
1. Z is a determinant of Y

• i.e. Z is in the error term, u_i

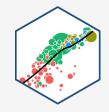
Omitted Variable Bias I



 Omitted variable bias (OVB) for some omitted variable Z exists if two conditionsa are met:



Omitted Variable Bias I



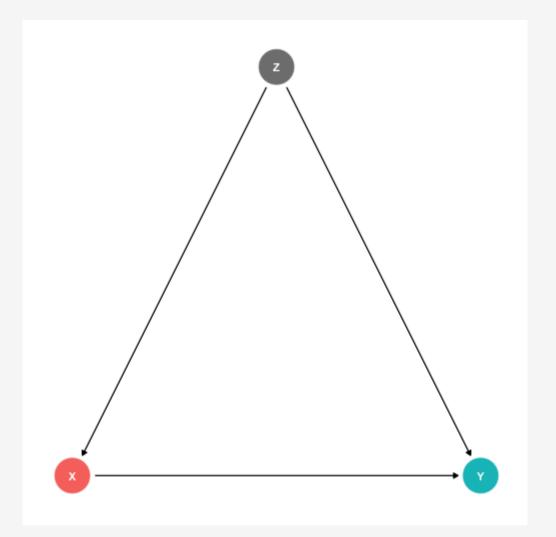
 Omitted variable bias (OVB) for some omitted variable Z exists if two conditionsa are met:

1. Z is a determinant of Y

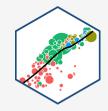
• i.e. Z is in the error term, u_i

2. Z is correlated with the regressor X

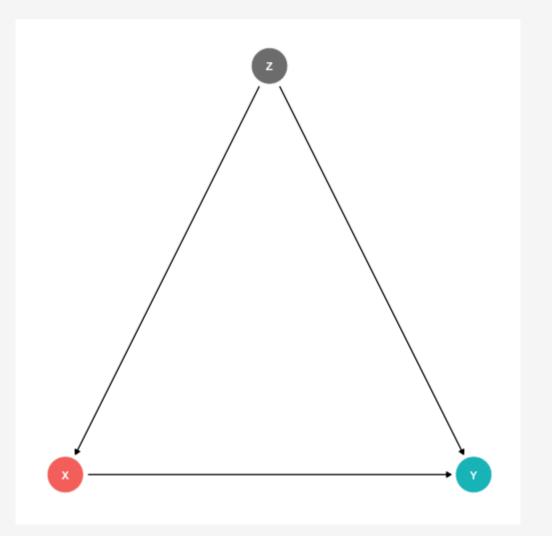
- i.e. $cor(X, Z) \neq 0$
- implies $cor(X, U) \neq 0$
- implies X is endogenous



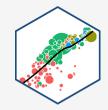
Omitted Variable Bias II



- ullet Omitted variable bias makes X endogenous
 - $\circ E(u_i|X_i) \neq 0 \implies \text{knowing } X$ tells you something about u_i
 - Knowing X tells you something about
 Y not by way of X!



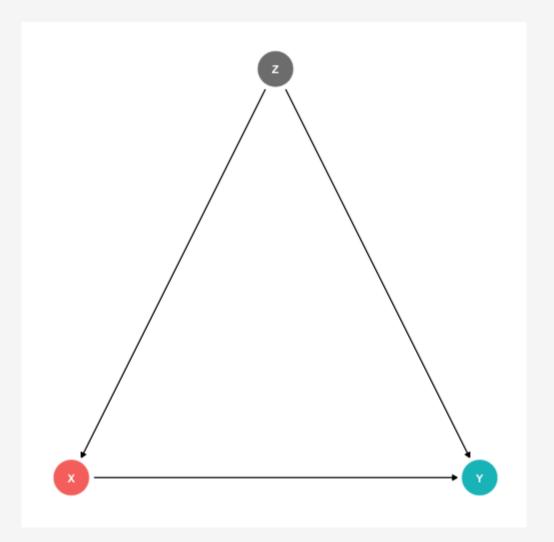
Omitted Variable Bias III



- $\hat{\beta_1}$ is biased: $E[\hat{\beta_1}] \neq \beta_1$
- $\hat{\beta}_1$ systematically over- or underestimates the true relationship (β_1)
- $\hat{\beta}_1$ "picks up" *both*:

$$\circ X \to Y$$

$$\circ X \leftarrow Z \rightarrow Y$$



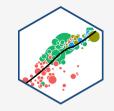
Omited Variable Bias: Class Size Example

Example: Consider our recurring class size and test score example:

Test score_i =
$$\beta_0 + \beta_1 STR_i + u_i$$

- Which of the following possible variables would cause a bias if omitted?
- 1. Z_i : time of day of the test
- 2. Z_i : parking space per student
- 3. Z_i : percent of ESL students

Recall: Endogeneity and Bias



• The true expected value of $\hat{\beta}_1$ is actually:

$$E[\hat{\beta}_1] = \beta_1 + cor(X, u) \frac{\sigma_u}{\sigma_X}$$

- 1) If X is exogenous: cor(X, u) = 0, we're just left with β_1
- 2) The larger cor(X, u) is, larger bias: $\left(E[\hat{\beta}_1] \beta_1\right)$
- 3) We can "sign" the direction of the bias based on cor(X, u)
 - Positive cor(X, u) overestimates the true β_1 ($\hat{\beta}_1$ is too high)
 - Negative cor(X, u) underestimates the true β_1 ($\hat{\beta}_1$ is too low)

[†] See <u>2.4 class notes</u> for proof.

Endogeneity and Bias: Correlations I



• Here is where checking correlations between variables helps:

```
# Select only the three variables we want (there are many)
CAcorr<-CASchool %>%
    select("str","testscr","el_pct")

# Make a correlation table
corr<-cor(CAcorr)
corr</pre>
## str testscr el_pct
```

```
## str testscr el_pct
## str 1.0000000 -0.2263628 0.1876424
## testscr -0.2263628 1.0000000 -0.6441237
## el pct 0.1876424 -0.6441237 1.0000000
```

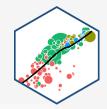
- el_pct is strongly (negatively)
 correlated with testscr (Condition 1)
- el_pct is reasonably (positively)
 correlated with str (Condition 2)

Endogeneity and Bias: Correlations II



• Here is where checking correlations between variables helps:

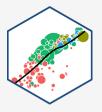
Look at Conditional Distributions I



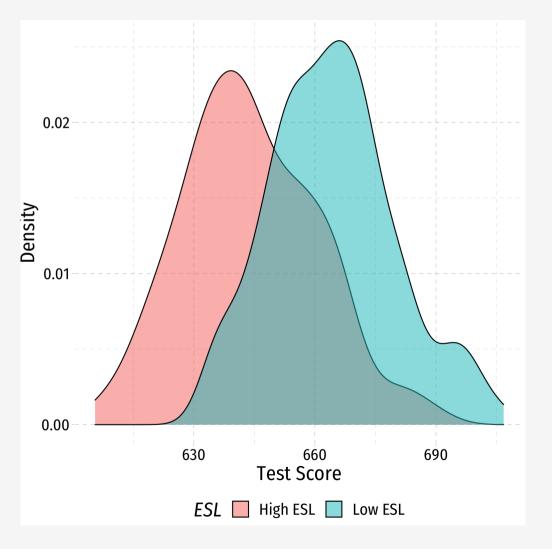
<chr></chr>	e_test_score
	<
High ESL	643.9591
Low ESL	664.3540

2 rows

Look at Conditional Distributions II

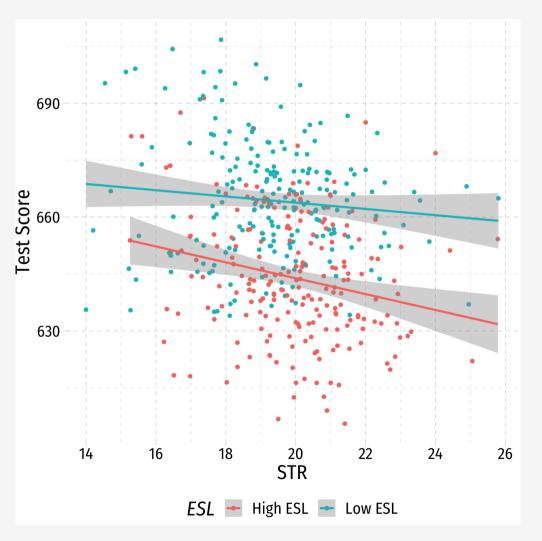


```
ggplot(data = CASchool)+
  aes(x = testscr,
      fill = ESL)+
  geom_density(alpha=0.5)+
  labs(x = "Test Score",
      y = "Density")+
  ggthemes::theme_pander(
    base_family = "Fira Sans Condensed",
    base_size=20
    )+
  theme(legend.position = "bottom")
```



Look at Conditional Distributions III

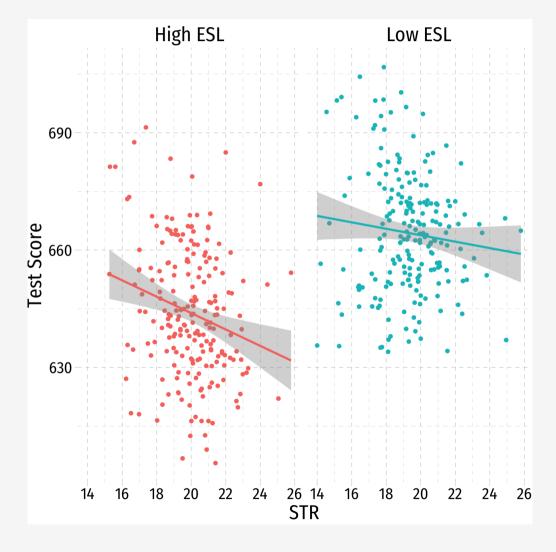




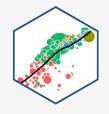
Look at Conditional Distributions III



```
esl_scatter+
  facet_grid(~ESL)+
  guides(color = F)
```



Omitted Variable Bias in the Class Size Example



$$E[\hat{\beta}_1] = \beta_1 + bias$$

$$E[\hat{\beta}_1] = \beta_1 + cor(X, u) \frac{\sigma_u}{\sigma_X}$$

- cor(STR, u) is positive (via %EL)
- cor(u, Test score) is negative (via %EL)
- β_1 is negative (between Test score and STR)
- Bias is positive
 - \circ But since β_1 is negative, it's made to be a *larger* negative number than it truly is
 - \circ Implies that β_1 overstates the effect of reducing STR on improving Test Scores

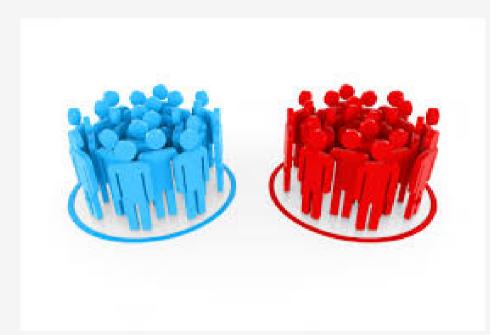
Omitted Variable Bias: Messing with Causality I

If school districts with higher Test Scores happen to have both lower STR **AND** districts with smaller STR sizes tend to have less %EL ...

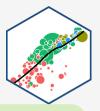
• How can we say $\hat{\beta}_1$ estimates the **marginal effect** of $\Delta STR \to \Delta Test Score$?

Omitted Variable Bias: Messing with Causality II

- Consider an ideal random controlled trial (RCT)
- Randomly assign experimental units (e.g. people, cities, etc) into two (or more) groups:
 - Treatment group(s): gets a (certain type or level of) treatment
 - Control group(s): gets no treatment(s)
- Compare results of two groups to get average treatment effect



RCTs Neutralize Omitted Variable Bias I



Example: Imagine an ideal RCT for measuring the effect of STR on Test Score

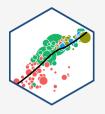
- School districts would be randomly assigned a student-teacher ratio
- With random assignment, all factors in u
 (family size, parental income, years in the
 district, day of the week of the test,
 climate, etc) are distributed
 independently of class size

RCTs Neutralize Omitted Variable Bias II

Example: Imagine an ideal RCT for measuring the effect of STR on Test Score

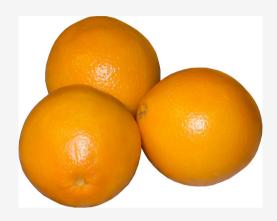
- Thus, cor(STR, u) = 0 and E[u|STR] = 0, i.e. **exogeneity**
- Our $\hat{\beta_1}$ would be an unbiased estimate of β_1 , measuring the true causal effect of STR \rightarrow Test Score

But We Rarely, if Ever, Have RCTs



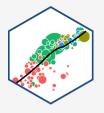
- But our data is not an RCT, it is observational data!
- "Treatment" of having a large or small class size is **NOT** randomly assigned!
- %EL: plausibly fits criteria of O.V. bias!
 - 1. %EL is a determinant of Test Score
 - 2. %EL is correlated with STR
- Thus, "control" group and "treatment" group differs systematically!
 - \circ Small STR also tend to have lower %EL; large STR also tend to have higher %EL

Treatment Group

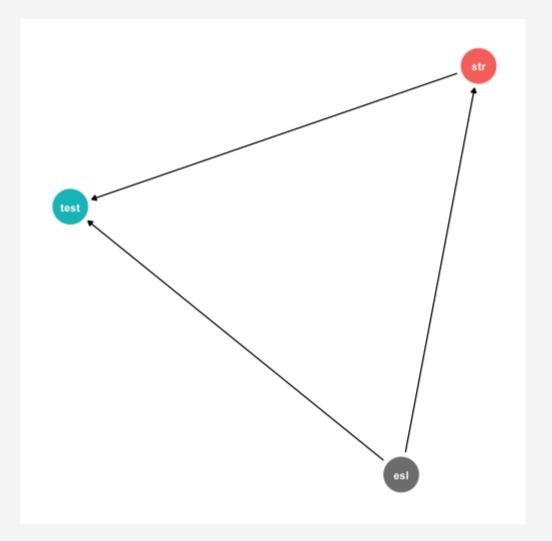


Control Group

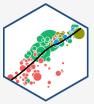
Another Way to Control for Variables



- Causal pathways connecting str and test score:
 - \circ str \rightarrow test score
 - \circ str \leftarrow ESL \rightarrow testscore

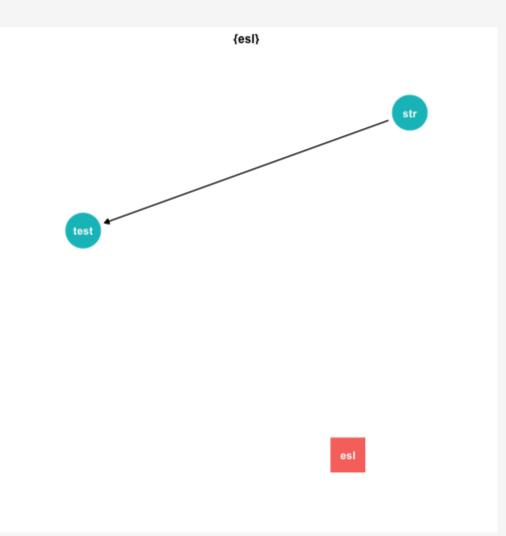


Another Way to Control for Variables

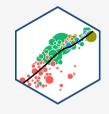


 Causal pathways connecting str and test score:

- \circ str \rightarrow test score
- \circ str \leftarrow ESL \rightarrow testscore
- DAG rules tell us we need to control for ESL in order to identify the causal effect of
- So now, how do we control for a variable?



Controlling for Variables

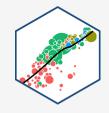


- Look at effect of STR on Test Score by comparing districts with the **same** %EL.
 - Eliminates differences in %EL
 between high and low STR classes
 - "As if" we had a control group! Hold%EL constant
- The simple fix is just to **not omit %EL!**
 - Make it another independent variable on the righthand side of the regression

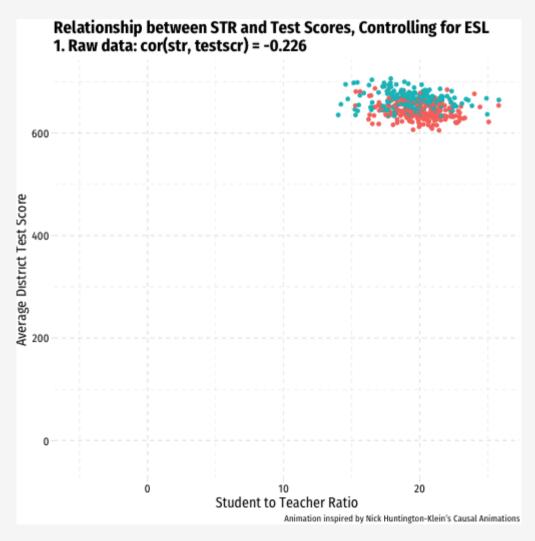
Treatment Group

Control Group

Controlling for Variables

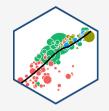


- Look at effect of STR on Test Score by comparing districts with the **same** %EL.
 - Eliminates differences in %EL
 between high and low STR classes
 - "As if" we had a control group! Hold%EL constant
- The simple fix is just to **not omit %EL!**
 - Make it another independent variable on the righthand side of the regression



The Multivariate Regression Model

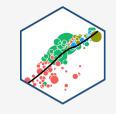
Multivariate Econometric Models Overview



$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki} + u_i$$

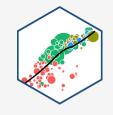
- *Y* is the **dependent variable** of interest
 - AKA "response variable," "regressand," "Left-hand side (LHS) variable"
- X_1 and X_2 are independent variables
 - AKA "explanatory variables", "regressors," "Right-hand side (RHS) variables", "covariates"
- Our data consists of a spreadsheet of observed values of (X_{1i}, X_{2i}, Y_i)
- To model, we "regress Y on X_1 and X_2 "
- $\beta_0, \beta_1, \cdots, \beta_k$ are parameters that describe the population relationships between the variables
 - We estimate k+1 parameters ("betas")

 $^{^{\}dagger}$ Note Bailey defines k to include both the number of variables plus the constant.



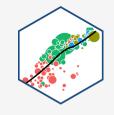
$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i}$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$
 Before the change



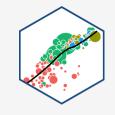
$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i}$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$
 Before the change $Y + \Delta Y = \beta_0 + \beta_1 (X_1 + \Delta X_1) + \beta_2 X_2$ After the change



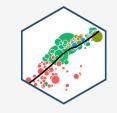
$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i}$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$
 Before the change $Y + \Delta Y = \beta_0 + \beta_1 (X_1 + \Delta X_1) + \beta_2 X_2$ After the change $\Delta Y = \beta_1 \Delta X_1$ The difference



$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i}$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$
 Before the change $Y + \Delta Y = \beta_0 + \beta_1 (X_1 + \Delta X_1) + \beta_2 X_2$ After the change $\Delta Y = \beta_1 \Delta X_1$ The difference $\frac{\Delta Y}{\Delta X_1} = \beta_1$ Solving for β_1



$$\beta_1 = \frac{\Delta Y}{\Delta X_1}$$
 holding X_2 constant

Similarly, for β_2 :

$$\beta_2 = \frac{\Delta Y}{\Delta X_2}$$
 holding X_1 constant

And for the constant, β_0 :

$$\beta_0$$
 = predicted value of Y when $X_1 = 0$, $X_2 = 0$

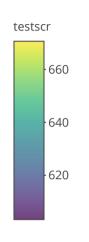
You Can Keep Your Intuitions...But They're Wrong Now

We have been envisioning OLS
regressions as the equation of a line
through a scatterplot of data on two
variables, X and Y

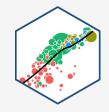
 $\circ \beta_0$: "intercept"

 $\circ \beta_1$: "slope"

• With 3+ variables, OLS regression is no longer a "line" for us to estimate



The "Constant"

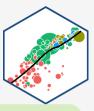


• Alternatively, we can write the population regression equation as:

$$Y_i = \beta_0 X_{0i} + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i$$

- Here, we added X_{0i} to β_0
- X_{0i} is a **constant regressor**, as we define $X_{0i}=1$ for all i observations
- Likewise, β_0 is more generally called the "constant" term in the regression (instead of the "intercept")
- This may seem silly and trivial, but this will be useful next class!

The Population Regression Model: Example I



Example:

Beer Consumption_i = $\beta_0 + \beta_1 Price_i + \beta_2 Income_i + \beta_3 Nachos Price_i + \beta_4 Wine Price$

- Let's see what you remember from micro(econ)!
- What measures the price effect? What sign should it have?
- What measures the **income effect**? What sign should it have? What should inferior or normal (necessities & luxury) goods look like?
- What measures the **cross-price effect(s)**? What sign should substitutes and complements have?

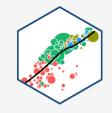
The Population Regression Model: Example I

Example:

Beer
$$\widehat{\text{Consumption}}_i = 20 - 1.5 Price_i + 1.25 Income_i - 0.75 \text{Nachos Price}_i + 1.3 \text{Wine}$$

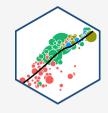
• Interpret each \hat{eta}

Multivariate OLS in R



- Format for regression is lm(y ~ x1 + x2, data = df)
- y is dependent variable (listed first!)
- ~ means "modeled by"
- x1 and x2 are the independent variable
- df is the dataframe where the data is stored

Multivariate OLS in R II

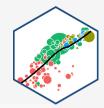


```
# look at reg object
school_reg_2
```

 Stored as an lm object called school_reg_2, a list object

```
##
## Call:
## lm(formula = testscr ~ str + el_pct, data = CASchool)
##
## Coefficients:
## (Intercept) str el_pct
## 686.0322 -1.1013 -0.6498
```

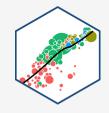
Multivariate OLS in R III



summary(school_reg_2) # get full summary

```
##
## Call:
## lm(formula = testscr ~ str + el pct, data = CASchool)
##
## Residuals:
              1Q Median 3Q
      Min
                                   Max
## -48.845 -10.240 -0.308 9.815 43.461
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 686.03225 7.41131 92.566 < 2e-16 ***
      -1.10130 0.38028 -2.896 0.00398 **
## str
## el_pct -0.64978 0.03934 -16.516 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.46 on 417 degrees of freedom
## Multiple R-squared: 0.4264, Adjusted R-squared: 0.4237
## F-statistic: 155 on 2 and 417 DF, p-value: < 2.2e-16
```

Multivariate OLS in R IV: broom

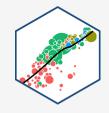


load packages library(broom)

tidy regression output tidy(school_reg_2)

term	estimate	std.error	statistic	
<chr></chr>			<dbl></dbl>	
(Intercept)	686.0322487	7.41131248	92.565554	
str	-1.1012959	0.38027832	-2.896026	
el_pct	-0.6497768	0.03934255	-16.515879	
3 rows 1-4 of 5 columns				

Multivariate Regression Output Table



	Model 1	Model 2		
Intercept	698.93 ***	686.03 ***		
	(9.47)	(7.41)		
Class Size	-2.28 ***	-1.10 **		
	(0.48)	(0.38)		
%ESL Students		-0.65 ***		
		(0.04)		
N	420	420		
R-Squared	0.05	0.43		
SER	18.58	14.46		
*** p < 0.001; ** p < 0.01; * p < 0.05.				