3.6 — Regression with Categorical Data ECON 480 • Econometrics • Fall 2020 Ryan Safner Assistant Professor of Economics ✓ safner@hood.edu ○ ryansafner/metricsF20 ⓒ metricsF20.classes.ryansafner.com

Outline

<u>Regression with Dummy Variables</u>

Recoding Dummies

Categorical Variables (More than 2 Categories)

Categorical Data

- **Categorical data** place an individual into one of several possible *categories*
 - e.g. sex, season, political party
 - may be responses to survey questions
 - can be quantitative (e.g. age, zip code)
- R calls these factors

Question	Categories or Responses
Do you invest in the stock market?	Yes No
What kind of advertising do you use?	Newspapers Internet Direct mailings
What is your class at school?	Freshman Sophomore Junior Senior
l would recommend this course to another student.	Strongly Disagree Slightly Disagree Slightly Agree Strongly Agree
How satisfied are you with this product?	Very Unsatisfied Unsatisfied Satisfied Satisfied Very Satisfied

Factors in **R**

- factor is a special type of character object class that indicates membership in a category (called a level)
- Suppose I have data on students:

```
students %>% head(n = 5)
```

ID Rank	Grade
<dbl> <chr></chr></dbl>	<dpl></dpl>
1 Sophomore	77
2 Senior	72
3 Freshman	73
4 Senior	73
5 Junior	84
5 rows	

Factors in **R**

• Rank is currently a character (<chr>) variable, but we can make it a factor variable, to indicate a student is a member of one of the possible categories: freshman, sophomore, junior, senior

```
students<-students %>%
  mutate(Rank = as.factor(Rank))
students %>% head(n = 5)
```

ID Rank	Grade
<dbl> <fctr></fctr></dbl>	<dbl></dbl>
1 Sophomore	77
2 Senior	72
3 Freshman	73
4 Senior	73
5 Junior	84
5 rows	

• See now it's a factor (<fctr>)

Factors in R

what are the categories?
students %>%
group_by(Rank) %>%
count()

Rank	n
<fctr></fctr>	<int></int>
Freshman	1
Junior	4
Senior	2
Sophomore	3
4 rows	

note the order is arbitrary!

Ordered Factors in R

- If there is a rank order you wish to preserve, you can make an ordered factor
 - list rankings from 1st to last

```
students<-students %>%
  mutate(Rank = ordered(Rank, levels = c("Freshman", "Sophomore", "Junior", "Senior")))
students %>% head(n = 5)
```

ID	Rank	Grade
<qpre>cqpre></qpre>	<ord></ord>	<dbl></dbl>
1	Sophomore	77
2	Senior	72
3	Freshman	73
4	Senior	73
5	Junior	84
5 rows		

Ordered Factors in R

students %>%
group_by(Rank) %>%
count()

Rank	n
<ord></ord>	<int></int>
Freshman	1
Sophomore	3
Junior	4
Senior	2
4 rows	

Example Research Question

Example: do men earn higher wages, on average, than women? If so, how much?

The Pure Statistics of Comparing Group Means

- Basic statistics: can test for statistically significant difference in group means with a ttest[†], let:
- Y_M : average earnings of a sample of n_M men
- Y_W : average earnings of a sample of n_W women
- **Difference** in group averages: $d = \overline{Y}_M \overline{Y}_W$
- The hypothesis test is:
 - $\circ H_0 : d = 0$ $\circ H_1 : d \neq 0$
- [†] See <u>today's class page</u> for this example

Plotting Factors in R

- If I plot a factor variable, e.g.
 Gender (which is either Male or Female), the scatterplot with wage looks like this
 - effectively R treats values of a factor variable as integers
 - in this case, "Female" = 0,"Male" = 1
- Let's make this more explicit by making a **dummy variable** to stand in for Gender

Regression with Dummy Variables

Comparing Groups with Regression

- In a regression, we can easily compare across groups via a **dummy variable**[†]
- Dummy variable only = 0 or = 1, if a condition is TRUE vs. FALSE
- Signifies whether an observation belongs to a category or not

Example:

$$\widehat{Wage_i} = \widehat{\beta_0} + \widehat{\beta_1}Female_i \qquad \text{where } Female_i = \begin{cases} 1 & \text{if individual } i \text{ is } Female \\ 0 & \text{if individual } i \text{ is } Male \end{cases}$$

• Again, $\hat{\beta_1}$ makes less sense as the "slope" of a line in this context

[†] Also called a **binary variable** or **dichotomous variable**

- Female is our dummy *x*-variable
- Hard to see relationships because of overplotting

- Female is our dummy *x*-variable
- Hard to see relationships because of overplotting
- Use geom_jitter() instead of geom_point() to randomly nudge points
 - *Only* for plotting purposes, does not affect actual data, regression, etc.

- Female is our dummy *x*-variable
- Hard to see relationships because of overplotting
- Use geom_jitter() instead of geom_point() to randomly nudge points
 - *Only* for plotting purposes, does not affect actual data, regression, etc.

Dummy Variables as Group Means

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 D_i$$
 where $D_i = \{0, 1\}$

- When $D_i = 0$ (Control group):
 - $\hat{Y}_i = \hat{\beta}_0^\circ$ *E*[*Y*|*D_i* = 0] = $\hat{\beta}_0^\circ$ ⇐⇒ the mean of *Y* when *D_i* = 0
- When $D_i = 1$ (Treatment group):

•
$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 D_i$$

• $E[Y|D_i = 1] = \hat{\beta}_0 + \hat{\beta}_1 \iff$ the mean of *Y* when $D_i = 1$

• So the **difference** in group means:

$$= E[Y_i | D_i = 1] - E[Y_i | D_i = 0]$$
$$= (\hat{\beta_0} + \hat{\beta_1}) - (\hat{\beta_0})$$
$$= \hat{\beta_1}$$

Example:

$$\widehat{Wage_i} = \widehat{\beta_0} + \widehat{\beta_1}Female_i$$

where $Female_i = \begin{cases} 1 & \text{if } i \text{ is } Female \\ 0 & \text{if } i \text{ is } Male \end{cases}$

• Mean wage for men:

Example:

$$\widehat{Wage_i} = \widehat{\beta_0} + \widehat{\beta_1}Female_i$$
where $Female_i = \begin{cases} 1 & \text{if } i \text{ is } Female_i \\ 0 & \text{if } i \text{ is } Male \end{cases}$

• Mean wage for men:

$$E[Wage|Female = 0] = \hat{\beta_0}$$

Example:

$$\widehat{Wage_i} = \widehat{\beta_0} + \widehat{\beta_1}Female_i$$
where $Female_i = \begin{cases} 1 & \text{if } i \text{ is } Female_i \\ 0 & \text{if } i \text{ is } Male \end{cases}$

• Mean wage for men:

$$E[Wage|Female = 0] = \hat{\beta_0}$$

• Mean wage for women:

Example:

$$\widehat{Wage_i} = \widehat{\beta_0} + \widehat{\beta_1}Female_i$$
where $Female_i = \begin{cases} 1 & \text{if } i \text{ is } Female_i \\ 0 & \text{if } i \text{ is } Male \end{cases}$

• Mean wage for men:

$$E[Wage|Female = 0] = \hat{\beta_0}$$

• Mean wage for women:

$$E[Wage|Female = 1] = \hat{\beta_0} + \hat{\beta_1}$$

Example:

$$\widehat{Wage_i} = \widehat{\beta_0} + \widehat{\beta_1}Female_i$$
where $Female_i = \begin{cases} 1 & \text{if } i \text{ is } Female_i \\ 0 & \text{if } i \text{ is } Male \end{cases}$

• Mean wage for men:

$$E[Wage|Female = 0] = \hat{\beta_0}$$

• Mean wage for women:

 $E[Wage|Female = 1] = \hat{\beta_0} + \hat{\beta_1}$

• Difference in wage between men & women:

Example:

$$\widehat{Wage_i} = \widehat{\beta_0} + \widehat{\beta_1}Female_i$$
where $Female_i = \begin{cases} 1 & \text{if } i \text{ is } Female_i \\ 0 & \text{if } i \text{ is } Male \end{cases}$

• Mean wage for men:

$$E[Wage|Female = 0] = \hat{\beta_0}$$

• Mean wage for women:

 $E[Wage|Female = 1] = \hat{\beta_0} + \hat{\beta_1}$

• Difference in wage between men & women:

$$d = \hat{\beta_1}$$

 $\widehat{Wage_i} = \hat{\beta_0} + \hat{\beta_1}Female_i$

where $Female_i = \begin{cases} 1 & \text{if } i \text{ is } Female \\ 0 & \text{if } i \text{ is } Male \end{cases}$

The Data

from wooldridge package
library(wooldridge)

save as a dataframe
wages<-wooldridge::wage1</pre>

wages

wage	educ	exper	tenure	nonwhite	female	married	numdep	smsa	northcen
<dpl></dpl>	<int></int>								
3.10	11	2	0	0	1	0	2	1	0
3.24	12	22	2	0	1	1	3	1	0
3.00	11	2	0	0	0	0	2	0	0
6.00	8	44	28	0	0	1	0	1	0
5.30	12	7	2	0	0	1	1	0	0
8.75	16	9	8	0	0	1	0	1	0
11.25	18	15	7	0	0	0	0	1	0
5.00	12	5	3	0	1	0	0	1	0
3.60	12	26	4	0	1	0	2	1	0

Get Group Averages & Std. Devs.

Summarize for Men

#	Summarize	for	Women	

mean	sd
<dbl></dbl>	
7.099489	4.160858
1 row	

	mean	sd
		<dbl></dbl>
	4.587659	2.529363
1 row		

Visualize Differences

The Regression I

```
femalereg<-lm(wage~female, data=wages)
summary(femalereg)</pre>
```

```
##
## Call:
## lm(formula = wage ~ female, data = wages)
##
## Residuals:
      Min
               1Q Median 3Q
##
                                     Max
## -5.5995 -1.8495 -0.9877 1.4260 17.8805
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 7.0995 0.2100 33.806 < 2e-16 ***
               -2.5118 0.3034 -8.279 1.04e-15 ***
## female
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.476 on 524 degrees of freedom
```


library(broom)
tidy(femalereg)

term	estimate	std.error	
<chr></chr>		<dbl></dbl>	
(Intercept)	7.099489	0.2100082	
female	-2.511830	0.3034092	
2 rows 1-3 of 5 columns			

Dummy Regression vs. Group Means

From tabulation of group means

Gender	Avg. Wage	Std. Dev.	n
Female	4.59	2.33	252
Male	7.10	4.16	274
Difference	2.51	0.30	_

From *t*-test of difference in group means

term	estimate	std.error		
<chr></chr>		<dbl></dbl>		
(Intercept)	7.099489	0.2100082		
female	-2.511830	0.3034092		
2 rows 1-3 of 5 columns				

$$\widehat{\text{Wages}}_i = 7.10 - 2.51 \text{ Female}_i$$

Recoding Dummies

Recoding Dummies

Example:

• Suppose instead of *female* we had used:

$$\widehat{Wage_i} = \hat{\beta_0} + \hat{\beta_1}Male_i \qquad \text{where } Male_i = \begin{cases} 1 & \text{if person } i \text{ is } Male \\ 0 & \text{if person } i \text{ is } Female \end{cases}$$

Recoding Dummies with Data

```
wages %>%
```

```
select(wage, female, male) %>%
head()
```

	wage	female	male
	<qpf><</qpf>	<int></int>	<dbl></dbl>
1	3.10	1	0
2	3.24	1	0
3	3.00	0	1
4	6.00	0	1
5	5.30	0	1
6	8.75	0	1
6 rows			

Scatterplot with Male

Dummy Variables as Group Means: With Male

Example:

$$\widehat{Wage_i} = \widehat{\beta_0} + \widehat{\beta_1}Male_i$$

where $Male_i = \begin{cases} 1 & \text{if } i \text{ is } Male \\ 0 & \text{if } i \text{ is } Female \end{cases}$

• Mean wage for men:

$$E[Wage|Male = 1] = \hat{\beta_0} + \hat{\beta_1}$$

• Mean wage for women:

 $E[Wage|Male = 0] = \hat{\beta_0}$

• Difference in wage between men & women:

$$d = \hat{\beta_1}$$

Scatterplot with Male

The Regression with Male I

```
malereg<-lm(wage~male, data=wages)
summary(malereg)</pre>
```

```
##
## Call:
## lm(formula = wage ~ male, data = wages)
##
## Residuals:
      Min
              1Q Median 3Q
                                    Max
##
## -5.5995 -1.8495 -0.9877 1.4260 17.8805
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 4.5877 0.2190 20.950 < 2e-16 ***
## male
         2.5118 0.3034 8.279 1.04e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.476 on 524 degrees of freedom
```

library(broom)
tidy(malereg)

term	estimate	std.error	statistic	
<chr></chr>			<dpl></dpl>	
(Intercept)	4.587659	0.2189834	20.949802	
male	2.511830	0.3034092	8.278688	
2 rows 1-4 of 5 columns				

The Dummy Regression: Male or Female

	(1)	(2)	
Constant	4.59 ***	7.10 ***	
	(0.22)	(0.21)	
Female		-2.51 ***	
		(0.30)	
Male	2.51 ***		
	(0.30)		
Ν	526	526	
R-Squared	0.12	0.12	
SER	3.48	3.48	
*** p < 0.001; ** p < 0.01; * p < 0.05.			

- Note it doesn't matter if we use male or female, males always earn \$2.51 more than females
- Compare the constant (average for the D = 0 group)
- Should you use male AND female? We'll come to that...

Categorical Variables (More than 2 Categories)

Categorical Variables with More than 2 Categories

- A categorical variable expresses membership in a category, where there is no ranking or hierarchy of the categories
 - $\circ~$ We've looked at categorical variables with 2 categories only
 - e.g. Male/Female, Spring/Summer/Fall/Winter, Democratic/Republican/Independent
- Might be an **ordinal variable** expresses rank or an ordering of data, but not necessarily their relative magnitude
 - $\circ~$ e.g. Order of finalists in a competition (1st, 2nd, 3rd)
 - e.g. Highest education attained (1=elementary school, 2=high school, 3=bachelor's degree, 4=graduate degree)

Using Categorical Variables in Regression I

Example: How do wages vary by region of the country? Let $Region_i = \{Northeast, Midwest, South, West\}$

• Can we run the following regression?

$$\widehat{Wages}_i = \hat{\beta}_0 + \hat{\beta}_1 Region_i$$

Using Categorical Variables in Regression II

Example: How do wages vary by region of the country?

Code region numerically:

$$Region_{i} = \begin{cases} 1 & \text{if } i \text{ is in } Northeast \\ 2 & \text{if } i \text{ is in } Midwest \\ 3 & \text{if } i \text{ is in } South \\ 4 & \text{if } i \text{ is in } West \end{cases}$$

• Can we run the following regression?

$$\widehat{Wages}_i = \hat{\beta}_0 + \hat{\beta}_1 Region_i$$

Using Categorical Variables in Regression III

Example: How do wages vary by region of the country?

Create a dummy variable for *each* region:

- $Northeast_i = 1$ if *i* is in Northeast, otherwise = 0
- $Midwest_i = 1$ if *i* is in Midwest, otherwise = 0
- $South_i = 1$ if *i* is in South, otherwise = 0
- $West_i = 1$ if *i* is in West, otherwise = 0

• Can we run the following regression?

$$\widehat{Wages_i} = \hat{\beta_0} + \hat{\beta_1}Northeast_i + \hat{\beta_2}Midwest_i + \hat{\beta_3}South_i + \hat{\beta_4}West_i$$

• For every i: Northeast_i + Midwest_i + South_i + West_i = 1!

The Dummy Variable Trap

Example:
$$\widehat{Wages}_i = \hat{\beta}_0 + \hat{\beta}_1 Northeast_i + \hat{\beta}_2 Midwest_i + \hat{\beta}_3 South_i + \hat{\beta}_4 West_i$$

• If we include *all* possible categories, they are **perfectly multicollinear**, an exact linear function of one another:

 $Northeast_i + Midwest_i + South_i + West_i = 1 \quad \forall i$

• This is known as the **dummy variable trap**, a common source of perfect multicollinearity

The Reference Category

- To avoid the dummy variable trap, always omit one category from the regression, known as the **"reference category"**
- It does not matter which category we omit!
- Coefficients on each dummy variable measure the *difference* between the *reference* category and each category dummy

Example:
$$\widehat{Wages}_i = \hat{\beta}_0 + \hat{\beta}_1 Northeast_i + \hat{\beta}_2 Midwest_i + \hat{\beta}_3 South_i$$

• *West_i* is omitted (arbitrarily chosen)

•
$$\hat{\beta}_0$$
:

Example:
$$\widehat{Wages}_i = \hat{\beta}_0 + \hat{\beta}_1 Northeast_i + \hat{\beta}_2 Midwest_i + \hat{\beta}_3 South_i$$

- *West_i* is omitted (arbitrarily chosen)
- $\hat{\beta}_0$: average wage for *i* in the West
- $\hat{\beta}_1$:

Example:
$$\widehat{Wages}_i = \hat{\beta}_0 + \hat{\beta}_1 Northeast_i + \hat{\beta}_2 Midwest_i + \hat{\beta}_3 South_i$$

- *West_i* is omitted (arbitrarily chosen)
- $\hat{\beta}_0$: average wage for *i* in the West
- $\hat{\beta}_1$: difference between West and Northeast

• $\hat{\beta}_2$:

Example:
$$\widehat{Wages}_i = \hat{\beta}_0 + \hat{\beta}_1 Northeast_i + \hat{\beta}_2 Midwest_i + \hat{\beta}_3 South_i$$

- *West_i* is omitted (arbitrarily chosen)
- $\hat{\beta}_0$: average wage for i in the West
- $\hat{\beta}_1$: difference between West and Northeast
- $\hat{\beta}_2$: difference between West and Midwest

•
$$\hat{\beta}_3$$
:

Example:
$$\widehat{Wages}_i = \hat{\beta}_0 + \hat{\beta}_1 Northeast_i + \hat{\beta}_2 Midwest_i + \hat{\beta}_3 South_i$$

- *West_i* is omitted (arbitrarily chosen)
- $\hat{\beta}_0$: average wage for i in the West
- $\hat{\beta}_1$: difference between West and Northeast
- $\hat{\beta}_2$: difference between West and Midwest
- $\hat{\beta}_3$: difference between West and South

Dummy Variable Trap in R

lm(wage ~ noreast + northcen + south + west, data = wages) %>% summary()

```
##
## Call:
## lm(formula = wage ~ noreast + northcen + south + west, data = wages)
##
## Residuals:
     Min
            1Q Median
                          3Q Max
##
## -6.083 -2.387 -1.097 1.157 18.610
##
## Coefficients: (1 not defined because of singularities)
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 6.6134
                          0.3891 16.995 < 2e-16 ***
## noreast
             -0.2436
                          0.5154 -0.473 0.63664
## northcen
             -0.9029
                          0.5035 -1.793 0.07352 .
         -1.2265
                          0.4728 -2.594 0.00974 **
## south
                                              NA
## west
                   NA
                              NA
                                     NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.671 on 522 degrees of freedom
## Multiple R-squared: 0.0175, Adjusted R-squared: 0.01185
## F-statistic: 3.099 on 3 and 522 DF, p-value: 0.02646
```


Using Different Reference Categories in R

let's run 4 regressions, each one we omit a different region no_noreast_reg <- lm(wage ~ northcen + south + west, data = wages) no_northcen_reg <- lm(wage ~ noreast + south + west, data = wages) no_south_reg <- lm(wage ~ noreast + northcen + west, data = wages) no_west_reg <- lm(wage ~ noreast + northcen + south, data = wages)</pre>

now make an output table

```
library(huxtable)
huxreg(no_noreast_reg,
    no_northcen_reg,
    no_south_reg,
    no_west_reg,
    coefs = c("Constant" = "(Intercept)",
        "Northeast" = "noreast",
        "Midwest" = "noreast",
        "Midwest" = "northcen",
        "South" = "south",
        "Vest" = "west"),
    statistics = c("N" = "nobs",
            "R-Squared" = "r.squared",
            "SER" = "sigma"),
    number_format = 3)
```

Using Different Reference Categories in R II

	(1)	(2)	(3)	(4)
Constant	6.370 ***	5.710 ***	5.387 ***	6.613 ***
	(0.338)	(0.320)	(0.268)	(0.389)
Northeast		0.659	0.983 *	-0.244
		(0.465)	(0.432)	(0.515)
Midwest	-0.659		0.324	-0.903
	(0.465)		(0.417)	(0.504)
South	-0.983 *	-0.324		-1.226 **
	(0.432)	(0.417)		(0.473)
West	0.244	0.903	1.226 **	
	(0.515)	(0.504)	(0.473)	
Ν	526	526	526	526
R-Squared	0.017	0.017	0.017	0.017
SER	3.671	3.671	3.671	3.671

- Constant is alsways average wage for reference (omitted) region
- Compare coefficients between Midwest in (1) and Northeast in (2)...
- Compare coefficients between West in (3) and South in (4)...
- Does not matter which region we omit!
 - \circ Same R^2 , SER, coefficients give same results

Dummy *Dependent*(Y) Variables

• In many contexts, we will want to have our *dependent* (Y) variable be a dummy variable

Example:

$$\widehat{Admitted}_i = \hat{\beta}_0 + \hat{\beta}_1 GPA_i$$
 where $Admitted_i = \begin{cases} 1 & \text{if } i \text{ is Admitted} \\ 0 & \text{if } i \text{ is Not Admitted} \end{cases}$

- A model where Y is a dummy is called a linear probability model, as it measures the probability of Y occuring (= 1) given the X's, i.e. $P(Y_i = 1 | X_1, \dots, X_k)$
 - \circ e.g. the probability person *i* is Admitted to a program with a given GPA
- Requires special tools to properly interpret and extend this (logit, probit, etc)
- Feel free to write papers that have dummy *Y* variables (but you may have to ask me some more questions)!

