3.7 - Interaction Effects

 ECON 480 • Econometrics • Fall 2020 Ryan SafnerAssistant Professor of Economics
, safner@hood.edu
© ryansafner/metricsF20
© metricsF20.classes.ryansafner.com

Outline

Interactions Between a Dummy and Continuous Variable
Interactions Between Two Dummy Variables
Interactions Between Two Continuous Variables

Sliders and Switches

Sliders and Switches

Dummy
Variable

Continuous Variable

- Marginal effect of dummy variable: effect on Y of going from 0 to 1
- Marginal effect of continuous variable: effect on Y of a 1 unit change in X

Interaction Effects

- Sometimes one X variable might interact with another in determining Y

Example: Consider the gender pay gap again.

- Gender affects wages
- Experience affects wages
- Does experience affect wages differently by gender?
- i.e. is there an interaction effect between gender and experience?
- Note this is NOT the same as just asking: "do men earn more than women with the same amount of experience?"

$$
\widehat{\text { wages }}_{i}=\beta_{0}+\beta_{1} \text { Gender }_{i}+\beta_{2} \text { Experience }_{i}
$$

Three Types of Interactions

- Depending on the types of variables, there are 3 possible types of interaction effects
- We will look at each in turn

1. Interaction between a dummy and a continuous variable:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} D_{i}+\beta_{3}\left(X_{i} \times D_{i}\right)
$$

2. Interaction between a two dummy variables:

$$
Y_{i}=\beta_{0}+\beta_{1} D_{1 i}+\beta_{2} D_{2 i}+\beta_{3}\left(D_{1 i} \times D_{2 i}\right)
$$

3. Interaction between a two continuous variables:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3}\left(X_{1 i} \times X_{2 i}\right)
$$

Interactions Between a Dummy and Continuous Variable

Interactions: A Dummy \& Continuous Variable

Dummy
Variable

Continuous Variable

- Does the marginal effect of the continuous variable on Y change depending on whether the dummy is "on" or "off"?

Interactions: A Dummy \& Continuous Variable I

- We can model an interaction by introducing a variable that is an interaction term capturing the interaction between two variables:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} D_{i}+\beta_{3}\left(X_{i} \times D_{i}\right) \quad \text { where } D_{i}=\{0,1\}
$$

- β_{3} estimates the interaction effect between X_{i} and D_{i} on Y_{i}
- What do the different coefficients (β) 's tell us?
- Again, think logically by examining each group ($D_{i}=0$ or $D_{i}=1$)

Interaction Effects as Two Regressions I

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} D_{i}+\beta_{3} X_{i} \times D_{i}
$$

- When $D_{i}=0$ (Control group):

$$
\begin{aligned}
& \hat{Y_{i}}=\hat{\beta_{0}}+\hat{\beta_{1}} X_{i}+\hat{\beta_{2}}(0)+\hat{\beta_{3}} X_{i} \times(0) \\
& \hat{Y}_{i}=\hat{\beta_{0}}+\hat{\beta_{1}} X_{i}
\end{aligned}
$$

- When $D_{i}=1$ (Treatment group):

$$
\begin{aligned}
& \hat{Y}_{i}=\hat{\beta_{0}}+\hat{\beta_{1}} X_{i}+\hat{\beta_{2}}(1)+\hat{\beta_{3}} X_{i} \times(1) \\
& \hat{Y}_{i}=\left(\hat{\beta_{0}}+\hat{\beta_{2}}\right)+\left(\hat{\beta_{1}}+\hat{\beta_{3}}\right) X_{i}
\end{aligned}
$$

- So what we really have is two regression lines!

Interaction Effects as Two Regressions II

- $D_{i}=0$ group:

$$
Y_{i}=\hat{\beta_{0}}+\hat{\beta_{1}} X_{i}
$$

- $D_{i}=1$ group:

$$
Y_{i}=\left(\hat{\beta_{0}}+\hat{\beta_{2}}\right)+\left(\hat{\beta_{1}}+\hat{\beta_{3}}\right) X_{i}
$$

Interpretting Coefficients I

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} D_{i}+\beta_{3}\left(X_{i} \times D_{i}\right)
$$

- To interpret the coefficients, compare cases after changing X by ΔX :

$$
Y_{i}+\Delta Y_{i}=\beta_{0}+\beta_{1}\left(X_{i}+\Delta X_{i}\right) \beta_{2} D_{i}+\beta_{3}\left(\left(X_{i}+\Delta X_{i}\right) D_{i}\right)
$$

- Subtracting these two equations, the difference is:

$$
\begin{aligned}
\Delta Y_{i} & =\beta_{1} \Delta X_{i}+\beta_{3} D_{i} \Delta X_{i} \\
\frac{\Delta Y_{i}}{\Delta X_{i}} & =\beta_{1}+\beta_{3} D_{i}
\end{aligned}
$$

- The effect of $X \rightarrow Y$ depends on the value of D_{i} !
- β_{3} : increment to the effect of $X \rightarrow Y$ when $D_{i}=1$ (vs. $D_{i}=0$)

Interpretting Coefficients II

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} D_{i}+\beta_{3}\left(X_{i} \times D_{i}\right)
$$

- $\hat{\beta_{0}}: E\left[Y_{i}\right]$ for $X_{i}=0$ and $D_{i}=0$
- β_{1} : Marginal effect of $X_{i} \rightarrow Y_{i}$ for $D_{i}=0$
- β_{2} : Marginal effect on Y_{i} of difference between $D_{i}=0$ and $D_{i}=1$
- β_{3} : The difference of the marginal effect of $X_{i} \rightarrow Y_{i}$ between $D_{i}=0$ and $D_{i}=1$
- This is a bit awkward, easier to think about the two regression lines:

Interpretting Coefficients III

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} D_{i}+\beta_{3}\left(X_{i} \times D_{i}\right)
$$

For $D_{i}=0$ Group: $\hat{Y}_{i}=\hat{\beta_{0}}+\hat{\beta}_{1} X_{i}$

- Intercept: $\hat{\beta}_{0}$
- slope: $\hat{\beta}_{1}$

$$
\text { For } D_{i}=1 \text { Group: }
$$

$$
\hat{Y}_{i}=\left(\hat{\beta_{0}}+\hat{\beta_{2}}\right)+\left(\hat{\beta_{1}}+\hat{\beta_{3}}\right) X_{i}
$$

- Intercept: $\hat{\beta_{0}}+\hat{\beta_{2}}$
- Slope: $\hat{\beta}_{1}+\hat{\beta}_{3}$
- $\hat{\beta_{2}}$: difference in intercept between groups
- $\hat{\beta}_{3}$: difference in slope between groups
- How can we determine if the two lines have the same slope and/or intercept?
- Same intercept? t-test $H_{0}: \beta_{2}=0$
- Same slope? t-test $H_{0}: \beta_{3}=0$

Example I

Example:

$$
\widehat{\text { wage }_{i}}=\hat{\beta_{0}}+\hat{\beta_{1}} \text { exper }_{i}+\hat{\beta_{2}} \text { female }_{i}+\hat{\beta_{3}}\left(\text { exper }_{i} \times \text { female }_{i}\right)
$$

- For males $($ female $=0)$:

$$
\widehat{\text { wage }_{i}}=\hat{\beta_{0}}+\hat{\beta_{1}} \text { exper }
$$

- For females $($ female $=1)$:

$$
\widehat{\text { wage }_{i}}=\underbrace{\left(\hat{\beta_{0}}+\hat{\beta_{2}}\right)}_{\text {intercept }}+\underbrace{\left(\hat{\beta_{1}}+\hat{\beta_{3}}\right)}_{\text {slope }} \text { exper }
$$

Example II

```
```

interaction_plot <- ggplot(data = wages)+

```
```

interaction_plot <- ggplot(data = wages)+
aes(x = exper,
aes(x = exper,
y = wage,
y = wage,
color = as.factor(Gender))+ \# make factor
color = as.factor(Gender))+ \# make factor
geom_point(alpha = 0.5)+
geom_point(alpha = 0.5)+
scale_y_continuous(labels=scales::dollar)+
scale_y_continuous(labels=scales::dollar)+
labs(x = "Experience (Years)",
labs(x = "Experience (Years)",
y = "Wage")+
y = "Wage")+
scale_color_manual(values = c("Female" = "\#e64173",
scale_color_manual(values = c("Female" = "\#e64173",
"Male" = "\#0047AB")
"Male" = "\#0047AB")
)+ \# setting custom colors
)+ \# setting custom colors
guides(color=F)+ \# hide legend
guides(color=F)+ \# hide legend
theme_slides
theme_slides
interaction_plot

```
```

interaction_plot

```
```

- Need to make sure color aesthetic uses a factor variable
- Can just use as.factor() in ggplot code

Example II

```
interaction_plot+ geom_smooth(method="lm")
```


Example II

interaction_plot+

geom_smooth(method="lm") +
facet_wrap(~Gender)

Example Regression in R I

- Syntax for adding an interaction term is easy in R: var1 * var2
- Or could just do var1 * var2 (multiply)
\# both are identical in R
interaction_reg <- lm(wage ~ exper * female, data = wages)
interaction_reg <- lm(wage \sim exper + female + exper * female, data = wages)

term	estimate	std.error	statistic	p.value
schr>	cdbl>	0.15827549	0.34167408	18.023830
(Intercept)	0.05360476	0.01543716	3.472450	$7.998534 \mathrm{e}-57$
exper	-1.54654677	0.48186030	-3.209534	$1.411253 \mathrm{e}-03$
female	-0.05506989	0.02217496	-2.483427	$1.332533 \mathrm{e}-02$
exper:female				

4 rows

Example Regression in R III

Example Regression in R: Interpretting Coefficients

$\widehat{\text { wage }_{i}}=6.16+0.05$ Experience $_{i}-1.55$ Female $_{i}-0.06\left(\right.$ Experience $_{i} \times$ Female $\left._{i}\right)$

- $\hat{\beta_{0}}$:

Example Regression in R: Interpretting Coefficients

$\widehat{\text { wage }_{i}}=6.16+0.05$ Experience $_{i}-1.55$ Female $_{i}-0.06\left(\right.$ Experience $_{i} \times$ Female $\left._{i}\right)$

- $\hat{\beta_{0}}$: Men with 0 years of experience earn 6.16
- $\hat{\beta_{1}}$:

Example Regression in R: Interpretting Coefficients

$\widehat{\text { wage }_{i}}=6.16+0.05$ Experience $_{i}-1.55$ Female $_{i}-0.06\left(\right.$ Experience $_{i} \times$ Female $\left._{i}\right)$

- $\hat{\beta_{0}}$: Men with 0 years of experience earn 6.16
- $\hat{\beta}_{1}$: For every additional year of experience, men earn $\$ 0.05$
- $\hat{\beta_{2}}$:

Example Regression in R: Interpretting Coefficients

$\widehat{\text { wage }_{i}}=6.16+0.05$ Experience $_{i}-1.55$ Female $_{i}-0.06\left(\right.$ Experience $_{i} \times$ Female $\left._{i}\right)$

- $\hat{\beta_{0}}$: Men with 0 years of experience earn 6.16
- $\hat{\beta}_{1}$: For every additional year of experience, men earn $\$ 0.05$
- $\hat{\beta}_{2}$: Women with 0 years of experience earn $\$ 1.55$ less than men
- $\hat{\beta_{3}}$:

Example Regression in R: Interpretting Coefficients

$\widehat{\text { wage }_{i}}=6.16+0.05$ Experience $_{i}-1.55$ Female $_{i}-0.06\left(\right.$ Experience $_{i} \times$ Female $\left._{i}\right)$

- $\hat{\beta_{0}}$: Men with 0 years of experience earn 6.16
- $\hat{\beta}_{1}$: For every additional year of experience, men earn $\$ 0.05$
- $\hat{\beta}_{2}$: Women with 0 years of experience earn $\$ 1.55$ less than men
- $\hat{\beta}_{3}$: Women earn $\$ 0.06$ less than men for every additional year of experience

Interpretting Coefficients as 2 Regressions I

$\widehat{\text { wage }_{i}}=6.16+0.05$ Experience $_{i}-1.55$ Female $_{i}-0.06\left(\right.$ Experience $_{i} \times$ Female $\left._{i}\right)$
Regression for men $($ female $=0)$

$$
\widehat{\text { wage }_{i}}=6.16+0.05 \text { Experience }_{i}
$$

- Men with 0 years of experience earn $\$ 6.16$ on average
- For every additional year of experience, men earn \$0.05 more on average

Interpretting Coefficients as 2 Regressions II

$\widehat{\text { wage }_{i}}=6.16+0.05$ Experience $_{i}-1.55$ Female $_{i}-0.06\left(\right.$ Experience $_{i} \times$ Female $\left._{i}\right)$
Regression for women (female $=1$)

$$
\begin{aligned}
&{\widehat{\text { wage }_{i}}}=6.16+0.05 \text { Experience }_{i}-1.55(1)-0.06 \text { Experience }_{i} \times(1) \\
&=(6.16-1.55)+(0.05-0.06) \text { Experience }_{i} \\
&=4.61-0.01 \text { Experience }_{i}
\end{aligned}
$$

- Women with 0 years of experience earn $\$ 4.61$ on average
- For every additional year of experience, women earn \$0.01 less on average

Example Regression in R: Hypothesis Testing

- Are slopes \& intercepts of the 2 regressions statistically significantly different?

$$
\begin{aligned}
{\widehat{\text { wage }_{i}}} & =6.16+0.05 \text { Experience }_{i}-1.55 \text { Female }_{i} \\
& -0.06\left(\text { Experience }_{i} \times \text { Female }_{i}\right)
\end{aligned}
$$

term	estimate	std.error	statistic	p.value
(Intercept)	6.16	0.342	18	$8 \mathrm{e}-$
				57
exper	0.0536	0.0154	3.47	0.000559
female	-1.55	0.482	-3.21	0.00141
exper:female	-0.0551	0.0222	-2.48	0.0133

Example Regression in R: Hypothesis Testing

- Are slopes \& intercepts of the 2 regressions statistically significantly different?
- Are intercepts different? $H_{0}: \beta_{2}=0$
- Difference between men vs. women for no experience?
- Is $\hat{\beta_{2}}$ significant?
- Yes (reject) $H_{0}: t=-3.210, p$-value $=$ 0.00

$$
\begin{aligned}
{\widehat{\text { wage }_{i}}} & =6.16+0.05 \text { Experience }_{i}-1.55 \text { Female }_{i} \\
& -0.06\left(\text { Experience }_{i} \times \text { Female }_{i}\right)
\end{aligned}
$$

term	estimate	std.error	statistic	p.value
(Intercept)	6.16	0.342	18	$8 \mathrm{e}-$
				57
exper	0.0536	0.0154	3.47	0.000559
female	-1.55	0.482	-3.21	0.00141
exper:female	-0.0551	0.0222	-2.48	0.0133

Example Regression in R: Hypothesis Testing

- Are slopes \& intercepts of the 2 regressions statistically significantly different?
- Are intercepts different? $H_{0}: \beta_{2}=0$
- Difference between men vs. women for no experience?
- Is $\hat{\beta_{2}}$ significant?
- Yes (reject) $H_{0}: t=-3.210, p$-value $=$ 0.00
- Are slopes different? $H_{0}: \beta_{3}=0$
- Difference between men vs. women for marginal effect of experience?
- Is $\hat{\beta}_{3}$ significant?

$$
\begin{aligned}
{\widehat{\text { wage }_{i}}} & =6.16+0.05 \text { Experience }_{i}-1.55 \text { Female }_{i} \\
& -0.06\left(\text { Experience }_{i} \times \text { Female }_{i}\right)
\end{aligned}
$$

term	estimate	std.error	statistic	p.value
(Intercept)	6.16	0.342	18	$8 \mathrm{e}-$
				57
exper	0.0536	0.0154	3.47	0.000559
female	-1.55	0.482	-3.21	0.00141
exper:female	-0.0551	0.0222	-2.48	0.0133

Interactions Between Two Dummy Variables

Interactions Between Two Dummy Variables

Dummy Variable

Dummy
Variable

- Does the marginal effect on Y of one dummy going from "off" to "on" change depending on whether the other dummy is "off" or "on"?

Interactions Between Two Dummy Variables

$$
Y_{i}=\beta_{0}+\beta_{1} D_{1 i}+\beta_{2} D_{2 i}+\beta_{3}\left(D_{1 i} \times D_{2 i}\right)
$$

- $D_{1 i}$ and $D_{2 i}$ are dummy variables
- $\hat{\beta}_{1}$: effect on Y of going from $D_{1 i}=0$ to $D_{1 i}=1$ when $D_{2 i}=0$
- $\hat{\beta}_{2}$: effect on Y of going from $D_{2 i}=0$ to $D_{2 i}=1$ when $D_{1 i}=0$
- $\hat{\beta}_{3}$: effect on Y of going from $D_{1 i}=0$ to $D_{1 i}=1$ when $D_{2 i}=1$
- increment to the effect of $D_{1 i}$ going from 0 to 1 when $D_{2 i}=1$ (vs. 0)
- As always, best to think logically about possibilities (when each dummy $=0$ or $=1$)

2 Dummy Interaction: Interpretting Coefficients

$$
Y_{i}=\beta_{0}+\beta_{1} D_{1 i}+\beta_{2} D_{2 i}+\beta_{3}\left(D_{1 i} \times D_{2 i}\right)
$$

- To interpret coefficients, compare cases:
- Hold $D_{2 i}$ constant (set to some value $D_{2 i}=d_{2}$)
- Plug in Os or 1s for $D_{1 i}$

$$
\begin{aligned}
& E\left(Y_{i} \mid D_{1 i}=0, D_{2 i}=d_{2}\right)=\beta_{0}+\beta_{2} d_{2} \\
& E\left(Y_{i} \mid D_{1 i}=1, D_{2 i}=d_{2}\right)=\beta_{0}+\beta_{1}(1)+\beta_{2} d_{2}+\beta_{3}(1) d_{2}
\end{aligned}
$$

- Subtracting the two, the difference is:

$$
\beta_{1}+\beta_{3} d_{2}
$$

- The marginal effect of $D_{1 i} \rightarrow Y_{i}$ depends on the value of $D_{2 i}$
- $\hat{\beta}_{3}$ is the increment to the effect of D_{1} on Y when D_{2} goes from 0 to 1

Interactions Between 2 Dummy Variables: Example

Example: Does the gender pay gap change if a person is married vs. single?

$$
\widehat{\text { wage }_{i}}=\hat{\beta_{0}}+\hat{\beta}_{1} \text { female }_{i}+\hat{\beta}_{2} \text { married }_{i}+\hat{\beta_{3}}\left(\text { female }_{i} \times \text { married }_{i}\right)
$$

- Logically, there are 4 possible combinations of female $_{i}=\{0,1\}$ and married $_{i}=\{0,1\}$

1) Unmarried men $\left(\right.$ female $_{i}=0$, married $\left._{i}=0\right)$

$$
\widehat{\text { wage }_{i}}=\hat{\beta_{0}}
$$

Interactions Between 2 Dummy Variables: Example

Example: Does the gender pay gap change if a person is married vs. single?

$$
\widehat{\text { wage }_{i}}=\hat{\beta_{0}}+\hat{\beta}_{1} \text { female }_{i}+\hat{\beta}_{2} \text { married }_{i}+\hat{\beta_{3}}\left(\text { female }_{i} \times \text { married }_{i}\right)
$$

- Logically, there are 4 possible combinations of female $_{i}=\{0,1\}$ and married $_{i}=\{0,1\}$

1) Unmarried men $\left(\right.$ female $_{i}=0$, married $\left._{i}=0\right)$

$$
\widehat{\text { wage }_{i}}=\hat{\beta_{0}}
$$

3) Unmarried women $\left(\right.$ female $_{i}=1$, married $\left._{i}=0\right)$

$$
\widehat{\text { wage }_{i}}=\hat{\beta_{0}}+\hat{\beta_{1}}
$$

2) Married men $\left(\right.$ female $_{i}=0$, married $\left._{i}=1\right)$

$$
\widehat{\text { wage }_{i}}=\hat{\beta_{0}}+\hat{\beta_{2}}
$$

Interactions Between 2 Dummy Variables: Example

Example: Does the gender pay gap change if a person is married vs. single?

$$
\widehat{\text { wage }_{i}}=\hat{\beta_{0}}+\hat{\beta}_{1} \text { female }_{i}+\hat{\beta}_{2} \text { married }_{i}+\hat{\beta_{3}}\left(\text { female }_{i} \times \text { married }_{i}\right)
$$

- Logically, there are 4 possible combinations of female $_{i}=\{0,1\}$ and married $_{i}=\{0,1\}$

1) Unmarried men $\left(\right.$ female $_{i}=0$, married $\left._{i}=0\right)$

$$
\widehat{\text { wage }_{i}}=\hat{\beta_{0}}
$$

2) Married men $\left(\right.$ female $_{i}=0$, married $\left._{i}=1\right)$

$$
\widehat{\text { wage }_{i}}=\hat{\beta_{0}}+\hat{\beta_{2}}
$$

3) Unmarried women $\left(\right.$ female $_{i}=1$, married $\left._{i}=0\right)$

$$
\widehat{\text { wage }_{i}}=\hat{\beta_{0}}+\hat{\beta_{1}}
$$

4) Married women $\left(\right.$ female $_{i}=1$, married $\left._{i}=1\right)$

$$
\widehat{\text { wage }_{i}}=\hat{\beta_{0}}+\hat{\beta_{1}}+\hat{\beta_{2}}+\hat{\beta_{3}}
$$

Looking at the Data

\# get average wage for unmarried men
wages \%>\%
filter(female == 0,
married == 0) \%>\%
summarize(mean $=$ mean(wage))
\# get average wage for unmarried women
wages \%>\%
filter(female == 1,
married == 0) \%>\%
summarize(mean $=$ mean(wage))

mean
5.17

\# get average wage for married men
wages \%>\%
filter(female == 0,
married == 1) \%>\%
summarize(mean = mean(wage))
\# get average wage for married women
wages \%>\%
filter(female == 1,
married == 1) \%>\%
summarize(mean = mean(wage))

mean
7.98

mean

Two Dummies Interaction: Group Means

$$
\widehat{\text { wage }_{i}}=\hat{\beta_{0}}+\hat{\beta_{1}} \text { female }_{i}+\hat{\beta}_{2} \text { married }_{i}+\hat{\beta}_{3}\left(\text { female }_{i} \times \text { married }_{i}\right)
$$

	Men	Women
Unmarried	$\$ 5.17$	$\$ 4.61$
Married	$\$ 7.98$	$\$ 4.57$

Interactions Between Two Dummy Variables: In R I

```
reg_dummies <- lm(wage ~ female + married + female:married, data = wages)
reg_dummies %>% tidy()
```

term	estimate	std.error	statistic	p.value
(Intercept)	5.17	0.361	14.3	$2.26 \mathrm{e}-39$
female	-0.556	0.474	-1.18	0.241
married	2.82	0.436	6.45	$2.53 \mathrm{e}-10$
female:married	-2.86	0.608	-4.71	$3.2 \mathrm{e}-06$

Interactions Between Two Dummy Variables: In R II

```
library(huxtable)
huxreg(reg_dummies,
    coefs = c("Constant" = "(Intercept)",
            "Female" = "female",
            "Married" = "married",
            "Female * Married" = "female:marr:
    statistics = c("N" = "nobs",
            "R-Squared" = "r.squared",
            "SER" = "sigma"),
    number_format = 2)
```

	(1)
Constant	5.17 ***
	(0.36)
Female	-0.56
	(0.47)
Married	2.82 ***
	(0.44)
Female * Married	-2.86 ***
	(0.61)
N	526
R-Squared	0.18
SER	3.35

*** $p<0.001 ;$ ** $p<0.01 ;$ * $p<0.05$.

2 Dummies Interaction: Interpretting Coefficients

$$
\widehat{\text { wage }_{i}}=5.17-0.56 \text { female }_{i}+2.82 \text { married }_{i}-2.86\left(\text { female }_{i} \times \text { married }_{i}\right)
$$

	Men	Women
Unmarried	$\$ 5.17$	$\$ 4.61$
Married	$\$ 7.98$	$\$ 4.57$

- Wage for unmarried men: $\hat{\beta_{0}}=5.17$
- Wage for married men: $\hat{\beta_{0}}+\hat{\beta_{2}}=5.17+2.82=7.98$
- Wage for unmarried women: $\hat{\beta}_{0}+\hat{\beta}_{1}=5.17-0.56=4.61$
- Wage for married women: $\hat{\beta_{0}}+\hat{\beta_{1}}+\hat{\beta_{2}}+\hat{\beta_{3}}=5.17-0.56+2.82-2.86=4.57$

2 Dummies Interaction: Interpretting Coefficients

$$
\widehat{\text { wage }_{i}}=5.17-0.56 \text { female }_{i}+2.82 \text { married }_{i}-2.86\left(\text { female }_{i} \times \text { married }_{i}\right)
$$

	Men	Women
Unmarried	$\$ 5.17$	$\$ 4.61$
Married	$\$ 7.98$	$\$ 4.57$

- $\hat{\beta}_{1}$: Wage for unmarried men
- $\hat{\beta}_{2}$: Difference in wages between men and women who are unmarried
- $\hat{\beta_{3}}$: Difference in:
- effect of Marriage on wages between men and women
- effect of Gender on wages between unmarried and married individuals

Interactions Between Two Continuous

 Variables
Interactions Between Two Continuous Variables

Continuous
Variable

Continuous
Variable

- Does the marginal effect of X_{1} on Y depend on what X_{2} is set to?

Interactions Between Two Continuous Variables

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3}\left(X_{1 i} \times X_{2 i}\right)
$$

- To interpret coefficients, compare changes after changing $\Delta X_{1 i}$ (holding X_{2} constant):

$$
Y_{i}+\Delta Y_{i}=\beta_{0}+\beta_{1}\left(X_{1}+\Delta X_{1 i}\right) \beta_{2} X_{2 i}+\beta_{3}\left(\left(X_{1 i}+\Delta X_{1 i}\right) \times X_{2 i}\right)
$$

- Take the difference to get:

$$
\begin{aligned}
\Delta Y_{i} & =\beta_{1} \Delta X_{1 i}+\beta_{3} X_{2 i} \Delta X_{1 i} \\
\frac{\Delta Y_{i}}{\Delta X_{1 i}} & =\beta_{1}+\beta_{3} X_{2 i}
\end{aligned}
$$

- The effect of $X_{1} \rightarrow Y_{i}$ depends on X_{2}
- β_{3} : increment to the effect of $X_{1} \rightarrow Y_{i}$ for every 1 unit change in X_{2}

Continuous Variables Interaction: Example

Example: Do education and experience interact in their determination of wages?

$$
\widehat{\text { wage }_{i}}=\hat{\beta_{0}}+\hat{\beta_{1}} \text { educ }_{i}+\hat{\beta_{2}} \text { exper }_{i}+\hat{\beta_{3}}\left(\text { educ }_{i} \times \text { exper }_{i}\right)
$$

- Estimated effect of education on wages depends on the amount of experience (and vice versa)!

$$
\begin{aligned}
& \frac{\Delta \text { wage }^{\Delta \text { educ }}=\hat{\beta_{1}}+\beta_{3} \text { exper }_{i}}{\frac{\Delta \text { wage }}{\Delta \text { exper }}=\hat{\beta_{2}}+\beta_{3} \text { educ }_{i}}
\end{aligned}
$$

- This is a type of nonlinearity (we will examine nonlinearities next lesson)

Continuous Variables Interaction: In R I

```
reg_cont <- lm(wage ~ educ + exper + educ:exper, data = wages)
reg_cont %>% tidy()
```

term	estimate	std.error	statistic	p.value
(Intercept)	-2.86	1.18	-2.42	0.0158
educ	0.602	0.0899	6.69	$5.64 \mathrm{e}-11$
exper	0.0458	0.0426	1.07	0.283
educ:exper	0.00206	0.00349	0.591	0.555

Continuous Variables Interaction: In R II

```library(huxtable) huxreg(reg_cont, coefs = c("Constant" = "(Intercept)", "Education" = "educ", "Experience" = "exper", "Education * Experience" = "educ:exper"), statistics = c("N" = "nobs", "R-Squared" = "r.squared", "SER" = "sigma"), number_format = 3)```		(1)
	Constant	-2.860 *
		(1.181)
	Education	0.602 ***
		(0.090)
	Experience	0.046
		(0.043)
	Education * Experience	0.002
		(0.003)
	N	526
	R-Squared	0.226
	SER	3.259
	*** p < 0.001; ** p < 0.01;	p<0.05.

## Continuous Variables Interaction: Marginal Effects

$$
{\widehat{\text { wages }_{i}}=-2.860+0.602 \text { educ }_{i}+0.047 \text { exper }_{i}+0.002\left(\text { educ }_{i} \times \text { exper }_{i}\right), ~}_{\text {a }}
$$

Marginal Effect of Education on Wages by Years of Experience:

Experience	$\frac{\Delta \text { wage }}{\Delta e d u c}=\hat{\beta_{1}}+\hat{\beta_{3}}$ exper
5 years	$0.602+0.002(5)=0.612$
10 years	$0.602+0.002(10)=0.622$
15 years	$0.602+0.002(15)=0.632$

- Marginal effect of education $\rightarrow$ wages increases with more experience (but very insignificantly)


## Continuous Variables Interaction: Marginal Effects

$$
{\widehat{\text { wages }_{i}}=-2.860+0.602 \text { educ }_{i}+0.047 \text { exper }_{i}+0.002\left(\text { educ }_{i} \times \text { exper }_{i}\right), ~}_{\text {a }}
$$

Marginal Effect of Experience on Wages by Years of Education:

Education	$\frac{\Delta \text { wage }}{\Delta e d u c}=\hat{\beta}_{1}+\hat{\beta}_{3}$ exper
5 years	$0.047+0.002(5)=0.057$
10 years	$0.047+0.002(10)=0.067$
15 years	$0.047+0.002(15)=0.077$

- Marginal effect of experience $\rightarrow$ wages increases with more education (but very insignificantly)


## Marginal Effects

Can get the marginal effects more precisely by saving the coefficients and making a function of each:

```
b_1 <- reg_cont %>%
 tidy() %%%
 filter(term == "educ") %>%
 pull(estimate)
b_2 <- reg_cont %>%
 tidy() %>%
 filter(term == "exper") %>%
 filter(term ==
b_3 <- reg_cont %>%
 tidy() %>%
 filter(term == "educ:exper") %>%
 pull(estimate)
let's check these
c(b_1, b_2, b_3)
\#\# [1] 0.601735470 0.045768911 0.002062345
```

\# make marginal effect of education on wages by years of experience function
\# input is years of experience
me_educ<-function(exper)\{b_1*b_3*exper\}
\# now its a function, let's input 5 years, 10 years, 15 years of experience me_educ(c(5,10,15))

```
make marginal effect of experience on wages by years of education function
input is years of education
me_exper<-function(educ){b_2*b_3*educ}
now its a function, let's input 5 years, 10 years, 15 years of education
me_exper(c(5,10,15))
[1] 0.0004719563 0.0009439126 0.0014158689
```


## Marginal Effects

Effect of Education on Wages, by Years of Experience


Effect of Experience on Wages, by Years of Education


