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Clever Research Designs Identify Causality

Again, this toolkit of research designs to identify causal effects is the economist’'s comparative
advantage that firms and governments want!



Difference-in-Difference Models




Natural Experiments
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« Often, we want to examine the consequences of
a change, such as a law or policy
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« Often, we want to examine the consequences of
a change, such as a law or policy intervention

. : how do States that implement \(X\)
see changes in \(Y\)

o Treatment: States that implement \(X\)
o Control: States that did not implement \(X\)



Difference-in-Difference Models |

!

« Often, we want to examine the consequences of . ' nIFF_In_nlrrs .

a change, such as a law or policy ¥

. : how do States that implement law \
(X\) see changes in \(Y\)

o Treatment: States that implement \(X\)
o Control: States that did not implement \(X\)

o If we have panel data with observations for all
states before and after the change...

' Y v b %
« Find the difference between treatment & control - sn HOT RIGHT NOW

groups /n their differences before and after the o
treatment period

1-. ‘lli




Difference-in-Difference Models |
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Difference-in-Difference Models II

o The difference-in-difference model (aka “diff-in-diff” or “DND”) identifies treatment effect by differencing
the difference pre- and post-treatment values of \(Y\) between treatment and control groups

$S\hat{Y_{it}}=\beta_0+\beta_1 \text{Treated} i +\beta_2 \text{After} {t}+\beta_3 (\text{Treated} i \times
\text{After} {t}+u_{it}SS

o \(Treated_i= \begin{cases}1 \text{ if } i \text{ is in treatment group}\\ 0 \text{ if } i \text{ is not in treatment group}\end{cases}
\quad After_t= \begin{cases}1 \text{ if } t \text{ is after treatment period}\\ 0 \text{ if } t \text{ is before treatment

period}\end{cases}\)

Control Treatment Group Diff \((\Delta Y_i)\)
Before \(\beta_0\) \(\beta_0+\beta_1\) \(\beta_1\)
\ \
After (\beta_0+\beta_2\) (\beta_0+\beta_1+\beta_2+\beta_3\) \(\beta_+\beta_3\)
Time Diff \((\Delta \(\beta_2\) \(\beta_2+\beta_3\) Diff-in-diff \(\Delta_i

Y_t)\) \Delta_t: \beta_3\)




Silly Example: Hot Dogs

Im(price ~ cheese + chili + cheesexchili,
data = hotdogs) %>%
tidy()

(Intercept) 2.00
cheese 0.35
Is there a discount when you get cheese and chili? chili 0.35
cheese:chili 0.00
2.00 0 0
2.35 1 0
2.35 0 1
2.70 1 1

4 rows




Silly Example: Hot Dogs

v 2

PLAIN $2.00 CHEESE $2.35

&

CHILI $2.35  CHILI CHEESE $2.70

Is there a discount when you get cheese and chili?

No Cheese Cheese Cheese Diff

No Chili  $2.00 $235  $0.35
Chili $2.35 $270  $0.35
Chili Diff $50.35 $0.35  $0.00 (Diff-in-diff)

Im(price ~ cheese + chili + cheesexchili,

data = hotdogs) %>%
tidy()

term estimate
(Intercept) 2.00
cheese 0.35
chili 0.35
cheese:chili 0.00

o Diff-n-diff is just a model with an interaction term between two dummies!



Visualizing Diff-in-Diff

$S\hat{Y_{it}}=\beta_0+\beta_1 \text{Treated} i +\beta_2 \text{After} {t}+\beta_3 (\text{Treated} i \times
\text{After}_{t})+u_{it}S$

o Control group \((Treated = 0)\)

e \(\hat{\beta_0}\): value of \(Y\) for control
group before treatment

e \(\hat{\beta 2}\): time difference (for control
g group)
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Time



Visualizing Diff-in-Diff

$S\hat{Y_{it}}=\beta_0+\beta_1 \text{Treated} i +\beta_2 \text{After} {t}+\beta_3 (\text{Treated} i \times
\text{After}_{t})+u_{it}S$

Control group \((Treated = 0)\)

\(\hat{\beta_0}\): value of \(Y\) for control
group before treatment

\(\hat{\beta_2}\): time difference (for control
group)

.
ﬂ
N

([ ]

tbefore tafter
Time



Visualizing Diff-in-Diff
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Visualizing Diff-in-Diff

$S\hat{Y_{it}}=\beta_0+\beta_1 \text{Treated} i +\beta_2 \text{After} {t}+\beta_3 (\text{Treated} i \times
\text{After}_{t})+u_{it}S$
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Visualizing Diff-in-Diff I

$S\hat{Y_{it}}=\beta_0+\beta_1 \text{Treated} i +\beta_2 \text{After} {t}+\beta_3 (\text{Treated} i \times
\text{After}_{t})+u_{it}S$

o \(\bar{Y_i}\) for Control group before: \
(\hat{\beta_0}\)

Time
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Visualizing Diff-in-Diff I
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Comparing Group Means (Again)

SS\hat{Y_{it}}=\beta_0+\beta_1 \text{Treated} i +\beta_2 \text{After} {t}+\beta_3 (\text{Treated} i \times
\text{After}_{t})+u_{it}S$

Control Treatment SEIDRhIA
((\Delta Y_i)\)
Before \(\beta_0\) \(\beta_0+\beta_1\) \(\beta_1\)
After \ \ \
(\beta_0+\beta_2\) (\beta_0+\beta 1+\beta_2+\beta_3\) (\beta_1+\beta_3\)
Time Diff \ Diff-in-diff \
'me Bl \(\beta_2\) \(\beta_2+\beta_3\) (\Delta_i \Delta_t:

((\Delta Y_t)\) \beta_3\)




Key Assumption: Counterfactual

$S\hat{y_{it}}=\beta_0+\beta_1 \text{Treated} i +\beta_2 \text{After} {t}+\beta_3
(\text{Treated} i \times \text{After} {t})+u_{it}$$

o Key assumption for DND: time trends (for
treatment and control) are parallel

e Treatment and control groups assumed to
: be identical over time on average, except
” : for treatment

e Counterfactual: if the treatment group had
not recieved treatment, it would have
¢ changed identically over time as the
torore e control group \((\hat{\beta_2})\)

Time




Key Assumption: Counterfactual

$S\hat{y_{it}}=\beta_0+\beta_1 \text{Treated} i +\beta_2 \text{After} {t}+\beta_3
(\text{Treated} i \times \text{After} {t})+u_{it}$$

e |f the time-trends would have been
different, a biased measure of the
treatment effect \((\hat{\beta_3})\)!

tbefore tafter
Time



Example I: HOPE in Georgia




Diff-in-Diff Example |

: In 1993 Georgia initiated a HOPE scholarship program to let state residents with at least a B average in
high school attend public college in Georgia for free. Did it increase college enrollment?

Micro-level data on 4,291 young individuals

\(\text{InCollege}_{it}=\begin{cases}1 \text{ if } i \text{ is in college during year }t\\ 0 \text{if } i \text{ is not
in college during year }t\\ \end{cases}\)

\(\text{Georgia}_i=\begin{cases}1 \text{ if } i \text{ is a Georgia resident}\\ 0 \text{ if } i \text{ is not a
Georgia resident}\\ \end{cases}\)

\(\text{After}_t=\begin{cases}1 \text{ if } t \text{ is after 1992}\\ 0 \text{ if } t \text{ is after 1992}\\
\end{cases}\)

Dynarski, Susan (2000), "Hope for Whom? Financial Aid for the Middle Class and Its Impact on College Attendance"



Diff-in-Diff Example I

We can use a DND model to measure the effect of HOPE scholarship on enrollments

Georgia and nearby States, if not for HOPE, changes should be the same over time

Treatment period: after 1992

Treatment: Georgia

Differences-in-differences: $SS\Delta_i \Delta_t Enrolled = (\text{GA} {after}-
\text{GA}_{before})-(\text{neighbors}_{after}-\text{neighbors}_{before})SS

e Regression equation: SS\widehat{Enrolled_{it}} = \beta_0+\beta_1\, Georgia_{i}+\beta_2 \,
After_{t}+\beta_3 \, (Georgia_{i} \times After_{t})SS



Example: Data

StateCode Age Year Weight Age18 Lowincome InCollege After Georgia  AfterGeorgia

56 19 89 1396 0 1 1 0 0 0
56 19 89 1080 0 1 0 0 0
56 18 89 924 1 1 1 0 0 0
56 19 89 891 0 0 1 0 0 0
56 19 89 1395 0 0 0 0 0
56 18 89 1106 1 1 1 0 0 0
56 19 89 965 0 0 0 0 0
56 18 89 958 1 0 0 0 0
56 19 89 1006 0 0 0 0 0
56 19 89 1183 0 1 1 0 0 0




Example: Data




Example: Regression

DND_reg<-1m(InCollege ~ Georgia + After + Georgia*After, data = hope)
DND_reg %>% tidy()

term estimate std.error statistic p.value
(Intercept) 0.405782652 0.01092390 371463182 4.221545e-262
Georgia -0.105236204 0.03778114 -2.7854165 5.369384e-03
After -0.004459609 0.01585224 -0.2813235 1.784758e-01
Georgia:After 0.089329828 0.04889329 1.8270364 6.776378e-02

SS\widehat{Enrolled_{it}}=0.406-0.105 \, Georgia_{i}-0.004 \, After_{t}+0.089 \, (Georgia_{i} \times After_{t})SS



Example: Interpretting the Regression

SS\widehat{Enrolled_{it}}=0.406-0.105 \, Georgia_{i}-0.004 \, After_{t}+0.089 \, (Georgia_{i}
\times After {t})SS

e \(\beta_0\): A non-Georgian before 1992 was 40.6% likely to be a college student

 \(\beta_1\): Georgians before 1992 were 10.5% less likely to be college students than
neighboring states

e \(\beta_2\): After 1992, non-Georgians are 0.4% less likely to be college students

e \(\beta_3\): After 1992, Georgians are 8.9% more likely to enroll in colleges than
neighboring states

e Treatment effect: HOPE increased enrollment likelihood by 8.9%




Example: Comparing Group Means

SS\widehat{Enrolled_{it}}=0.406-0.105 \, Georgia_{i}-0.004 \, After_{t}+0.089 \, (Georgia_{i}
\times After {t})SS

o A group mean for a dummy \(Y\) is \(E[Y=1]\), i.e. the probability a student is enrolled:

Non-Georgian enrollment probability pre-1992: \(\beta_0=0.406\)

Georgian enrollment probability pre-1992: \(\beta_0+\beta_1=0.406-0.105=0.301\)

Non-Georgian enrollment probability post-1992: \(\beta_0+\beta_2=0.406-0.004=0.402\)

Georgian enrollment probability post-1992: \(\beta_0+\beta_1+\beta_2+\beta_3=0.406-
0.105-0.004+0.089=0.386\)



Example: Comparing Group Means in R

# group mean for non-Georgian before 1992 # group mean for non-Georgian AFTER 1992
hope %>% hope %>%
filter(Georgia==0, filter(Georgia==0,
After==0) %>% After==1) %>%
summarize(prob = mean(InCollege)) summarize(prob = mean(InCollege))

0.4057827 0.401323

1row 1row




Example: Comparing Group Means in Rl

# group mean for Georgian before 1992 # group mean for Georgian AFTER 1992
hope %>% hope %>%
filter(Georgia==1, filter(Georgia==1,
After==0) %>% After==1) %>%
summarize(prob = mean(InCollege)) summarize(prob = mean(InCollege))

0.3005464 0.3854167

1row 1row




Example: Diff-in-Diff Summary

SS\widehat{Enrolled_{it}}=0.406-0.105 \, Georgia_{i}-0.004 \, After_{t}+0.089 \, (Georgia_{i}
\times After {t})SS

Neighbors Georgia Group Diff \((\Delta Y_i)\)
Before \(0.406\) \(0.301\) \(-0.105\)
After \(0.402\) \(0.386\) \(0.016\)
Time Diff \((\Delta Y_t)\) \(-0.004\) \(0.085\) Diff-in-diff: \(0.089\)

SS\begin{align*} \Delta_i \Delta_t Enrolled &= (\text{GA}_{after}-\text{GA}_{before})-
(\text{neighbors}_{after}-\text{neighbors}_{before})\\ &=(0.386-0.301)-(0.402-0.406)\\ &=
(0.085)-(-0.004)\\ &=0.089\\ \end{align*}$$




Example: Diff-in-Diff Graph

State — Neighbors — Georgia

0.400 4

0.375 1

0.350 1

0.325 1

Probability of Being Enrolled in College

0.300 1

Bef'ore Af{er
Before or After HOPE




Generalizing DND Models




Generalizing DND Models

e DND can be generalized with a two-way fixed effects model:
SS\widehat{Y_{it}}=\alpha_i+\theta_t+\beta_3 (\text{Treated}_i * \text{After}_{t})+\nu_{it}S$
o \(\alpha_i\): group fixed effects (treatments/control groups)
o \(\theta_t\): time fixed effects (pre/post treatment)

o Allows many periods, and treatment(s) can occur at different times to different units (so
long as some do not get treated)

e Can also add control variables that vary within units and over time
SS\widehat{Y_{it}}=\alpha_i+\theta_t+\beta_3 \, (\text{Treated}_i \times
\text{After}_{t})+\beta_& X_{it}+\nu_{it}S$



Our Example, Generalized |

SS\widehat{Enrolled_{it}} = \alpha_i+\theta_t+\beta_3 \, (Georgia_{it} \times After_{it})SS
e StateCode isa variable for the State \(\implies\) create State fixed effect

e Year isavariable for the year \(\implies\) create year fixed effect



Our Example, Generalized II

e Using LSDV method...

DND_fe <- 1m(InCollege ~ Georgia*After + factor(StateCode) + factor(Year),
data = hope)
DND_fe %>% tidy()

term estimate std.error statistic p.value
(Intercept) 0.418057478 0.02261133 18.4888517 1.734550e-73
Georgia -0.141501255 0.03936119 -3.5949436 3.281224e-04
After 0.075340594 0.03128021 2.4085706 1.605717e-02
factor(StateCode)57 -0.014181112 0.02739708 -0.5176140 6.047544e-01
factor(StateCode)58

factor(StateCode)59 -0.062378540 0.01954266 -31919172 1.423556e-03
factor(StateCode)62 -0.132650271 0.02806143 -4.7271383 2.350298e-06
factor(StateCode)63 -0.005103868 0.02627780 -0.1942274 8.460071e-01
factor(Year)90 0.046608845 0.02833625 1.6448486 1.000745e-01
factor(Year)91 0.032275789 0.02856877 11297577 2.586417e-01

1

SS\widehat{InCollege_{it}}=\alpha_i+\theta_t+0.091 \, (\text{Georgia}_i \times \text{After}_{it})$$



Intuition behind DND

e Diff-in-diff models are the quintessential example of exploiting natural experiments

e A major change at a point in time (change in law, a natural disaster, political crisis)

separates groups where one is affected and another is not---identifies the effect of the
change (treatment)

e One of the cleanest and clearest causal identification strategies



Example II: "The" Card-Kreuger Minimum Wage
Study




Example: "The" Card-Kreuger Minimum Wage Study |

Example: The controversial minimum wage study, Card & Kreuger (1994) is a quintessential (and
clever) diff-in-diff.

Card, David, Krueger, Alan B, (1994), "Minimum Wages and Employment: A Case Study of the Fast-Food Industry in New Jersey and Pennsylvania," American Economic Review 84 (&4): 772-793




Card & Kreuger (1994): Background |

o Card & Kreuger (1994) compare
employment in fast food restaurants on
New Jersey and Pennsylvania sides of
border between February and November
1992.

e Pennsylvania & New Jersey both had a
minimum wage of $4.25 before February
1992

e In February 1992, New Jersey raised
minimum wage from $4.25 to $5.05

nnnnn



Card & Kreuger (1994): Background II

e If we look only at New Jersey before &
after change:

o Omitted variable bias:
macroeconomic variables (there's a
recession!), weather, etc.

o Including PA as a control will control
for these time-varying effects if they
are national trends

e Surveyed 400 fast food restaurants on
each side of the border, before & after
min wage increase
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Card & Kreuger (1994): Summary |

TABLE 1 —SAMPLE DESIGN AND RESPONSE RATES

Stores in:
All NJ PA
Wave 1, February 15— March 4, 1992:
Number of stores in sample frame:® 473 364 109
Number of refusals: 63 33 30
Number interviewed: 410 331 79
Response rate (percentage); 86.7 90.9 ]
Wave 2, November 5 - December 31, 1992;
Number of stores in sample frame: 410 331 79
Number closed: 6 5 1
Number under rennovation: 2 /) 0
Number temporarily closed:” 2 i 0
Number of refusals: 1 1 0
Number interviewed:© 399 321 78




Card & Kreuger (1994): Summary II

TaBLE 2—MEans ofF KEY VARIABLES

Stores in:

Variable NI PA
1. Distribution of Store Types (percentages):

a. Burger King 41.1 44.3

b. KFC 20.5 15.2

¢. Roy Rogers 24.8 215

d. Wendy's 13.6 19.0

e. Company-owned 34.1 35.4




Card & Kreuger (1994): Model

$S\widehat{Employment_{i t}}=\beta_0+\beta_1 \, NJ_{i}+\beta_2 \, After_{t}+\beta_3 \, (NJ_i \times After_t)$$
« PA Before: \(\beta_0\)

PA After: \(\beta_0+\beta_2\)

N) Before: \(\beta_0+\beta_1\)

N) After: \(\beta_0+\beta 1+\beta_2+\beta_3\)

Diff-in-diff: \((N)_{after}-N)_{before})-(PA_{after}-PA_{before})\)

PA NJ Group Diff \((\Delta Y_i)\)
Before \(\beta_0\) \(\beta_0+\beta_1\) \(\beta_1\)
After \ \ \(\beta_1+\beta_3\)

(\beta_0+\beta_2\) (\beta_0+\beta_1+\beta_2+\beta_3\)



Card & Kreuger (1994): Results

Stores by state

Difference,
PA NJ NJ—-PA
Variable (i) (i1) (1i1)
1. FTE employment before, 2333 2044 - 2.89
all available observations (1.35) (0.51) (1.44)
2. FTE employment after, 21.17  21.03 —0.14
all available observations (0.94) (0.52) (1.07)
3. Change in mean FTE - 2.16 0.59 2.76

employment (1.25) (0.54) (1.36)




