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Clever Research Designs Identify Causality
Again, this toolkit of research designs to identify causal effects is the economist’s comparative
advantage that firms and governments want!



Difference-in-Difference Models



Natural Experiments



Often, we want to examine the consequences of
a change, such as a law or policy
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Often, we want to examine the consequences of
a change, such as a law or policy intervention

Example: how do States that implement \(X\)
see changes in \(Y\)

Treatment: States that implement \(X\)
Control: States that did not implement \(X\)
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Often, we want to examine the consequences of
a change, such as a law or policy

Example: how do States that implement law \
(X\) see changes in \(Y\)

Treatment: States that implement \(X\)
Control: States that did not implement \(X\)

If we have panel data with observations for all
states before and after the change...

Find the difference between treatment & control
groups in their differences before and after the
treatment period
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Difference-in-Difference Models II
The difference-in-difference model (aka “diff-in-diff” or “DND”) identifies treatment effect by differencing
the difference pre- and post-treatment values of \(Y\) between treatment and control groups

$$\hat{Y_{it}}=\beta_0+\beta_1 \text{Treated}_i +\beta_2 \text{After}_{t}+\beta_3 (\text{Treated}_i \times
\text{After}_{t})+u_{it}$$

\(Treated_i= \begin{cases}1 \text{ if } i \text{ is in treatment group}\\ 0 \text{ if } i \text{ is not in treatment group}\end{cases}
\quad After_t= \begin{cases}1 \text{ if } t \text{ is after treatment period}\\ 0 \text{ if } t \text{ is before treatment
period}\end{cases}\)

Control Treatment Group Diff \((\Delta Y_i)\)

Before \(\beta_0\) \(\beta_0+\beta_1\) \(\beta_1\)

After
\
(\beta_0+\beta_2\)

\
(\beta_0+\beta_1+\beta_2+\beta_3\)

\(\beta_1+\beta_3\)

Time Diff \((\Delta
Y_t)\)

\(\beta_2\) \(\beta_2+\beta_3\)
Diff-in-diff \(\Delta_i
\Delta_t: \beta_3\)



Is there a discount when you get cheese and chili?

price
<dbl>

cheese
<dbl>

chili
<dbl>

2.00 0 0
2.35 1 0
2.35 0 1
2.70 1 1

4 rows

lm(price ~ cheese + chili + cheese*chili,
   data = hotdogs) %>%
  tidy()

term
<chr>

estimate
<dbl>

(Intercept) 2.00
cheese 0.35
chili 0.35
cheese:chili 0.00

4 rows

Silly Example: Hot Dogs



Is there a discount when you get cheese and chili?

No Cheese Cheese Cheese Diff

No Chili $2.00 $2.35 $0.35

Chili $2.35 $2.70 $0.35

Chili Diff $0.35 $0.35 $0.00 (Diff-in-diff)

lm(price ~ cheese + chili + cheese*chili,
   data = hotdogs) %>%
  tidy()

term
<chr>

estimate
<dbl>

(Intercept) 2.00
cheese 0.35
chili 0.35
cheese:chili 0.00

4 rows

Silly Example: Hot Dogs

Diff-n-diff is just a model with an interaction term between two dummies!



Control group \((Treated = 0)\)

\(\hat{\beta_0}\): value of \(Y\) for control
group before treatment

\(\hat{\beta_2}\): time difference (for control
group)

Visualizing Diff-in-Diff
$$\hat{Y_{it}}=\beta_0+\beta_1 \text{Treated}_i +\beta_2 \text{After}_{t}+\beta_3 (\text{Treated}_i \times
\text{After}_{t})+u_{it}$$
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\(\bar{Y_i}\) for Control group before: \
(\hat{\beta_0}\)
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Comparing Group Means (Again)
$$\hat{Y_{it}}=\beta_0+\beta_1 \text{Treated}_i +\beta_2 \text{After}_{t}+\beta_3 (\text{Treated}_i \times
\text{After}_{t})+u_{it}$$

Control Treatment
Group Diff \

((\Delta Y_i)\)

Before \(\beta_0\) \(\beta_0+\beta_1\) \(\beta_1\)

After
\
(\beta_0+\beta_2\)

\
(\beta_0+\beta_1+\beta_2+\beta_3\)

\
(\beta_1+\beta_3\)

Time Diff \
((\Delta Y_t)\)

\(\beta_2\) \(\beta_2+\beta_3\)
Diff-in-diff \
(\Delta_i \Delta_t:
\beta_3\)



Key assumption for DND: time trends (for
treatment and control) are parallel

Treatment and control groups assumed to
be identical over time on average, except
for treatment

Counterfactual: if the treatment group had
not recieved treatment, it would have
changed identically over time as the
control group \((\hat{\beta_2})\)

Key Assumption: Counterfactual
$$\hat{Y_{it}}=\beta_0+\beta_1 \text{Treated}_i +\beta_2 \text{After}_{t}+\beta_3
(\text{Treated}_i \times \text{After}_{t})+u_{it}$$



If the time-trends would have been
different, a biased measure of the
treatment effect \((\hat{\beta_3})\)!

Key Assumption: Counterfactual
$$\hat{Y_{it}}=\beta_0+\beta_1 \text{Treated}_i +\beta_2 \text{After}_{t}+\beta_3
(\text{Treated}_i \times \text{After}_{t})+u_{it}$$



Example I: HOPE in Georgia



Diff-in-Diff Example I

Example: In 1993 Georgia initiated a HOPE scholarship program to let state residents with at least a B average in
high school attend public college in Georgia for free. Did it increase college enrollment?

Micro-level data on 4,291 young individuals

\(\text{InCollege}_{it}=\begin{cases}1 \text{ if } i \text{ is in college during year }t\\ 0 \text{ if } i \text{ is not
in college during year }t\\ \end{cases}\)

\(\text{Georgia}_i=\begin{cases}1 \text{ if } i \text{ is a Georgia resident}\\ 0 \text{ if } i \text{ is not a
Georgia resident}\\ \end{cases}\)

\(\text{After}_t=\begin{cases}1 \text{ if } t \text{ is after 1992}\\ 0 \text{ if } t \text{ is after 1992}\\
\end{cases}\)

Dynarski, Susan (2000), "Hope for Whom? Financial Aid for the Middle Class and Its Impact on College Attendance"



Diff-in-Diff Example II
We can use a DND model to measure the effect of HOPE scholarship on enrollments

Georgia and nearby States, if not for HOPE, changes should be the same over time

Treatment period: after 1992

Treatment: Georgia

Differences-in-differences: $$\Delta_i \Delta_t Enrolled = (\text{GA}_{after}-
\text{GA}_{before})-(\text{neighbors}_{after}-\text{neighbors}_{before})$$

Regression equation: $$\widehat{Enrolled_{it}} = \beta_0+\beta_1 \, Georgia_{i}+\beta_2 \,
After_{t}+\beta_3 \, (Georgia_{i} \times After_{t})$$



Next1 2 3 4 5 6 ... 430Previous

Example: Data
StateCode
<fctr>

Age
<dbl>

Year
<fctr>

Weight
<dbl>

Age18
<dbl>

LowIncome
<dbl>

InCollege
<dbl>

After
<dbl>

Georgia
<dbl>

AfterGeorgia
<dbl>

56 19 89 1396 0 1 1 0 0 0
56 19 89 1080 0 1 0 0 0
56 18 89 924 1 1 1 0 0 0
56 19 89 891 0 0 1 0 0 0
56 19 89 1395 0 0 0 0 0
56 18 89 1106 1 1 1 0 0 0
56 19 89 965 0 0 0 0 0
56 18 89 958 1 0 0 0 0
56 19 89 1006 0 0 0 0 0
56 19 89 1183 0 1 1 0 0 0

1-10 of 4,291 rows | 1-10 of 11 columns

NA

NA

NA
NA
NA



Example: Data



Example: Regression
DND_reg<-lm(InCollege ~ Georgia + After + Georgia*After, data = hope)
DND_reg %>% tidy()

term
<chr>

estimate
<dbl>

std.error
<dbl>

statistic
<dbl>

p.value
<dbl>

(Intercept) 0.405782652 0.01092390 37.1463182 4.221545e-262
Georgia -0.105236204 0.03778114 -2.7854165 5.369384e-03
After -0.004459609 0.01585224 -0.2813235 7.784758e-01
Georgia:After 0.089329828 0.04889329 1.8270364 6.776378e-02

4 rows

$$\widehat{Enrolled_{it}}=0.406-0.105 \, Georgia_{i}-0.004 \, After_{t}+0.089 \, (Georgia_{i} \times After_{t})$$



Example: Interpretting the Regression
$$\widehat{Enrolled_{it}}=0.406-0.105 \, Georgia_{i}-0.004 \, After_{t}+0.089 \, (Georgia_{i}
\times After_{t})$$

\(\beta_0\): A non-Georgian before 1992 was 40.6% likely to be a college student

\(\beta_1\): Georgians before 1992 were 10.5% less likely to be college students than
neighboring states

\(\beta_2\): After 1992, non-Georgians are 0.4% less likely to be college students

\(\beta_3\): After 1992, Georgians are 8.9% more likely to enroll in colleges than
neighboring states

Treatment effect: HOPE increased enrollment likelihood by 8.9%



Example: Comparing Group Means
$$\widehat{Enrolled_{it}}=0.406-0.105 \, Georgia_{i}-0.004 \, After_{t}+0.089 \, (Georgia_{i}
\times After_{t})$$

A group mean for a dummy \(Y\) is \(E[Y=1]\), i.e. the probability a student is enrolled:

Non-Georgian enrollment probability pre-1992 : \(\beta_0=0.406\)

Georgian enrollment probability pre-1992 : \(\beta_0+\beta_1=0.406-0.105=0.301\)

Non-Georgian enrollment probability post-1992 : \(\beta_0+\beta_2=0.406-0.004=0.402\)

Georgian enrollment probability post-1992 : \(\beta_0+\beta_1+\beta_2+\beta_3=0.406-
0.105-0.004+0.089=0.386\)



# group mean for non-Georgian before 1992
hope %>%
  filter(Georgia==0,
         After==0) %>%
  summarize(prob = mean(InCollege))

prob
<dbl>

0.4057827

1 row

# group mean for non-Georgian AFTER 1992
hope %>%
  filter(Georgia==0,
         After==1) %>%
  summarize(prob = mean(InCollege))

prob
<dbl>

0.401323

1 row

Example: Comparing Group Means in R



# group mean for Georgian before 1992
hope %>%
  filter(Georgia==1,
         After==0) %>%
  summarize(prob = mean(InCollege))

prob
<dbl>

0.3005464

1 row

# group mean for Georgian AFTER 1992
hope %>%
  filter(Georgia==1,
         After==1) %>%
  summarize(prob = mean(InCollege))

prob
<dbl>

0.3854167

1 row

Example: Comparing Group Means in R II



Example: Diff-in-Diff Summary
$$\widehat{Enrolled_{it}}=0.406-0.105 \, Georgia_{i}-0.004 \, After_{t}+0.089 \, (Georgia_{i}
\times After_{t})$$

Neighbors Georgia Group Diff \((\Delta Y_i)\)

Before \(0.406\) \(0.301\) \(-0.105\)

After \(0.402\) \(0.386\) \(0.016\)

Time Diff \((\Delta Y_t)\) \(-0.004\) \(0.085\) Diff-in-diff: \(0.089\)

$$\begin{align*} \Delta_i \Delta_t Enrolled &= (\text{GA}_{after}-\text{GA}_{before})-
(\text{neighbors}_{after}-\text{neighbors}_{before})\\ &=(0.386-0.301)-(0.402-0.406)\\ &=
(0.085)-(-0.004)\\ &=0.089\\ \end{align*}$$



Example: Diff-in-Diff Graph



Generalizing DND Models



Generalizing DND Models
DND can be generalized with a two-way fixed effects model: 
$$\widehat{Y_{it}}=\alpha_i+\theta_t+\beta_3 (\text{Treated}_i * \text{After}_{t})+\nu_{it}$$

\(\alpha_i\): group fixed effects (treatments/control groups)
\(\theta_t\): time fixed effects (pre/post treatment)

Allows many periods, and treatment(s) can occur at different times to different units (so
long as some do not get treated)

Can also add control variables that vary within units and over time
$$\widehat{Y_{it}}=\alpha_i+\theta_t+\beta_3 \, (\text{Treated}_i \times
\text{After}_{t})+\beta_4 X_{it}+\nu_{it}$$



Our Example, Generalized I
$$\widehat{Enrolled_{it}} = \alpha_i+\theta_t+\beta_3 \, (Georgia_{it} \times After_{it})$$

StateCode  is a variable for the State \(\implies\) create State fixed effect

Year  is a variable for the year \(\implies\) create year fixed effect



Next1 2Previous

Our Example, Generalized II
Using LSDV method...

DND_fe <- lm(InCollege ~ Georgia*After + factor(StateCode) + factor(Year),
           data = hope)
DND_fe %>% tidy()

term
<chr>

estimate
<dbl>

std.error
<dbl>

statistic
<dbl>

p.value
<dbl>

(Intercept) 0.418057478 0.02261133 18.4888517 1.734550e-73
Georgia -0.141501255 0.03936119 -3.5949436 3.281224e-04
After 0.075340594 0.03128021 2.4085706 1.605717e-02
factor(StateCode)57 -0.014181112 0.02739708 -0.5176140 6.047544e-01
factor(StateCode)58
factor(StateCode)59 -0.062378540 0.01954266 -3.1919172 1.423556e-03
factor(StateCode)62 -0.132650271 0.02806143 -4.7271383 2.350298e-06
factor(StateCode)63 -0.005103868 0.02627780 -0.1942274 8.460071e-01
factor(Year)90 0.046608845 0.02833625 1.6448486 1.000745e-01
factor(Year)91 0.032275789 0.02856877 1.1297577 2.586417e-01

1-10 of 17 rows

$$\widehat{InCollege_{it}}=\alpha_i+\theta_t+0.091 \, (\text{Georgia}_i \times \text{After}_{it})$$

NA NA NA NA



Intuition behind DND
Diff-in-diff models are the quintessential example of exploiting natural experiments

A major change at a point in time (change in law, a natural disaster, political crisis)
separates groups where one is affected and another is not---identifies the effect of the
change (treatment)

One of the cleanest and clearest causal identification strategies



Example II: "The" Card-Kreuger Minimum Wage
Study



Example: "The" Card-Kreuger Minimum Wage Study I

Example: The controversial minimum wage study, Card & Kreuger (1994) is a quintessential (and
clever) diff-in-diff.

Card, David, Krueger, Alan B, (1994), "Minimum Wages and Employment: A Case Study of the Fast-Food Industry in New Jersey and Pennsylvania," American Economic Review 84 (4): 772–793



Card & Kreuger (1994) compare
employment in fast food restaurants on
New Jersey and Pennsylvania sides of
border between February and November
1992.

Pennsylvania & New Jersey both had a
minimum wage of $4.25 before February
1992

In February 1992, New Jersey raised
minimum wage from $4.25 to $5.05

Card & Kreuger (1994): Background I



If we look only at New Jersey before &
after change:

Omitted variable bias:
macroeconomic variables (there's a
recession!), weather, etc.
Including PA as a control will control
for these time-varying effects if they
are national trends

Surveyed 400 fast food restaurants on
each side of the border, before & after
min wage increase

Card & Kreuger (1994): Background II



Card & Kreuger (1994): Comparisons



Card & Kreuger (1994): Summary I



Card & Kreuger (1994): Summary II



Card & Kreuger (1994): Model
$$\widehat{Employment_{i t}}=\beta_0+\beta_1 \, NJ_{i}+\beta_2 \, After_{t}+\beta_3 \, (NJ_i \times After_t)$$

PA Before: \(\beta_0\)

PA After: \(\beta_0+\beta_2\)

NJ Before: \(\beta_0+\beta_1\)

NJ After: \(\beta_0+\beta_1+\beta_2+\beta_3\)

Diff-in-diff: \((NJ_{after}-NJ_{before})-(PA_{after}-PA_{before})\)

PA NJ Group Diff \((\Delta Y_i)\)

Before \(\beta_0\) \(\beta_0+\beta_1\) \(\beta_1\)

After
\
(\beta_0+\beta_2\)

\
(\beta_0+\beta_1+\beta_2+\beta_3\)

\(\beta_1+\beta_3\)



Card & Kreuger (1994): Results


