1.3 — Data Visualization with ggplot2 ECON 480 • Econometrics • Fall 2020 Ryan Safner Assistant Professor of Economics ✓ safner@hood.edu ○ ryansafner/metricsF20 ⓒ metricsF20.classes.ryansafner.com

Outline

<u>Plotting in Base R</u>

ggplot2 and the tidyverse

<u>Plot Layers</u>

Some Troubleshooting

Graphics and Statistics

- Admittedly, we still need to cover basic descriptive statistics and data fundamentals
 - continuous, discrete, cross-sectional, time series, panel data
 - mean, median, variance, standard deviation
 - random variables, distributions, PDFs, Z-scores
 - bargraphs, boxplots, histograms, scatterplots
- All of this is coming in 2 weeks as we return to statistics and econometric theory
- But let's start with the fun stuff right away, even if you don't fully know the *reasons*: data visualiation

Plotting in Base R

Our Data Source

• For our examples, we'll use a dataset mpg from the ggplot2 library

library(ggplot2)

head(mpg)

##	#	A tibble: 6 x	x 11									
##		manufacturer	model	displ	year	cyl	trans	drv	cty	hwy	fl	class
##		<chr></chr>	<chr></chr>	<dbl></dbl>	<int></int>	<int></int>	<chr></chr>	<chr></chr>	<int></int>	<int></int>	<chr></chr>	<chr></chr>
##	1	audi	a4	1.8	1999	4	auto(l5)	f	18	29	р	compa
##	2	audi	a4	1.8	1999	4	manual(m5)	f	21	29	р	compa
##	3	audi	a4	2	2008	4	manual(m6)	f	20	31	р	compa
##	4	audi	a4	2	2008	4	auto(av)	f	21	30	р	compa
##	5	audi	a4	2.8	1999	6	auto(l5)	f	16	26	р	compa
##	6	audi	a4	2.8	1999	6	<pre>manual(m5)</pre>	f	18	26	р	compa

Plotting in Base R

- Base R is very powerful and intuitive to plot, but not very sexy
- Basic syntax for most types of plots:

```
plot_type(my_df$variable)
```

 If using multiple variables, you can avoid typing \$ by just typing the variable names and then in another argument to the plotting function, specify data = my_df

plot_type(my_df\$variable1, my_df\$variable2, data = my_df)

Plotting in Base R: Histogram

 Using the mpg data, plotting a histogram of hwy

hist(mpg\$hwy)

Plotting in Base R: Boxplot

• Using the mpg data, plotting a **boxplot** of hwy

boxplot(mpg\$hwy)

Plotting in Base R: Boxplot by Category

 Using the mpg data, plotting a boxplot of hwy by class

```
boxplot(mpg$hwy ~ mpg$class)
```

```
# second method
boxplot(mpg ~ class, data = mtcars)
```

- The ~ is part of R's "formula notation":
 - Dependent variable goes to left
 - Independent variable(s) to right, separated with + 's
 - Think y~x+z means "y is explained by x and z "

Plotting in Base R: Scatterplot

 Using the mpg data, plotting a scatterplot of hwy against displ

plot(mpg\$hwy ~ mpg\$displ)

second method
plot(hwy ~ displ, data = mpg)

ggplot2 and the tidyverse

The tidyverse

"The tidyverse is an opinionated collection of R packages designed for data science. All packages share an underlying design philosophy, grammar, and data structures.

- Largely (but not only) created by Hadley Wickham
- We will look at this much more extensively next week!
- This "flavor" of R will make your coding life *so much easier!*

- ggplot2 is perhaps the most popular package in R and a core element of the tidyverse
- gg stands for a grammar of graphics
- Very powerful and beautiful graphics, very customizable and reproducible, but requires a bit of a learning curve
- All those "cool graphics" you've seen in the New York Times, fivethirtyeight, the Economist, Vox, etc use the grammar of graphics

ggplot: All Your Figure are Belong to Us

Southwest's Delays Are Short; United's Are Long

As share of scheduled flights, 2014

FLIGHTS DELAYED 15-119 MINUTES

• FLIGHTS DELAYED 120+ MINUTES, CANCELED OR DIVERTED

Source: <u>fivethirtyeight</u>

Age Distribution of American Boys Named Joseph By year of birth

Source: fivethirtyeight

ggplot: All Your Figure are Belong to Us

Source: **BBC's bbplot**

Why Go gg?

"The transferrable skills from ggplot2 are not the idiosyncracies of plotting syntax, but a powerful way of thinking about visualisation, as a way of **mapping between variables and the visual properties of geometric objects** that you can perceive."

http://disq.us/p/sv640d

Hadley Wickham

Chief Scientist, R Studio

The Grammar of Graphics (gg)

- This is a true grammar
- We *don't* talk about specific chart **types**
 - That you have to hunt through in
 Excel and reshape your data to fit it
- Instead we talk about specific chart components

The Grammar of Graphics (gg) I

- Any graphic can be built from the same components:
 - 1. Data to be drawn from
 - 2. Aesthetic mappings from data to some visual marking
 - 3. Geometric objects on the plot
 - 4. Scales define the range of values
 - 5. Coordinates to organize location
 - 6. Labels describe the scale and markings
 - 7. Facets group into subplots
 - 8. Themes style the plot elements
- Not every plot needs *every* component, but all plots *must* have the first 3!

The Grammar of Graphics (gg) II

- Any graphic can be built from the same components:
 - 1. data to be drawn from
 - 2. aes thetic mappings from data to some visual marking
 - 3. geom metric objects on the plot
 - 4. scale define the range of values
 - 5. coord **inates** to organize location
 - 6. labels describe the scale and markings
 - 7. facet group into subplots
 - 8. theme style the plot elements
- Not every plot needs *every* component, but all plots *must* have the first 3!

The Grammar of Graphics (gg): All at Once

All in one command

- Produces plot output in viewer
- Does not save plot
 - \circ Save with <code>Export</code> menu in viewer
- Adding layers requires whole code for new plot

The Grammar of Graphics (gg): As R Objects

Saving as an object

- Saves your plot as an R object
- Does *not* show in viewer
 - Execute the name of your object to see it
- Can add layers by calling the original plot name

p <- p + geom_smooth() # saves and overwrites p
p2 <- p + geom_smooth() # saves as different ob</pre>

Plot Layers

The Grammar of Graphics

The Grammar of Graphics (gg): Data

Data

ggplot(data = mpg)

Data is the source of our data. As part of the tidyverse, ggplot2 requires data to be "tidy"¹:

1. Each variable forms a column

2. Each observation forms a row

3. Each observational unit forms a table

¹ Data "tidyness" is the core element of all tidyverse packages. Much more on all of this next class.

The Grammar of Graphics (gg): Adding Layers

Data

- Add a layer with + at the end of a line (never at the beginning!)
- Style recommendation: start a new line after each + to improve legibility!
- We will build a plot layer-by-layer

The Grammar of Graphics (gg): Aesthetics I

Data

Aesthetics

+ aes()

Aesthetics map data to visual elements or parameters

The Grammar of Graphics (gg): Aesthetics II

Aesthetics map data to visual elements or parameters

Data

Aesthetics

+ aes()

The Grammar of Graphics (gg): Aesthetics III

Data

Aesthetics

+ aes()

Aesthetics map data to visual elements or parameters

- displ
- hwy
- class

The Grammar of Graphics (gg): Aesthetics III

Data

Aesthetics

+ aes()

Aesthetics map data to visual elements or parameters

- displ $\rightarrow \mathbf{X}$
- hwy \rightarrow y
- class → *shape*, *size*, **color**, etc.

The Grammar of Graphics (gg): Aesthetics IV

Aesthetics map data to visual elements or parameters

Aesthetics

Data

+ aes()

The Grammar of Graphics (gg): Aesthetics IV

Data

Aesthetics

+ aes()

Aesthetics map data to visual elements or parameters

aes(x = displ, y = hwy, color = class)

The Grammar of Graphics (gg): Geoms I

Geometric objects displayed on the plot

Data

Aesthetics

Geoms

+ geom_*()

The Grammar of Graphics (gg): Geoms II

Data

Aesthetics

Geoms

+ geom_*()

Geometric objects displayed on the plot

• What geoms you should use depends on what you want to show:

Туре	geom					
Point	<pre>geom_point()</pre>					
Line	<pre>geom_line(), geom_path()</pre>					
Bar	<pre>geom_bar(), geom_col()</pre>					
Histogram	<pre>geom_histogram()</pre>					
Regression	<pre>geom_smooth()</pre>					
Boxplot	<pre>geom_boxplot()</pre>					

The Grammar of Graphics (gg): Geoms III

Data

Aesthetics

Geoms

```
+ geom_*()
```

Geometric objects displayed on the plot

##	[1]	"geom_abline"
##	[5]	"geom_blank"
##	[9]	"geom_count"
##	[13]	"geom_density_2d"
##	[17]	"geom_errorbarh"
##	[21]	"geom_hline"
##	[25]	"geom_linerange"
##	[29]	"geom_pointrange"
##	[33]	"geom_quantile"
##	[37]	"geom_rug"
##	[41]	"geom_sf_text"
##	[45]	"geom_text"

"geom_area" "geom_boxplot" "geom_crossbar" "geom_density2d" "geom_freqpoly" "geom_jitter" "geom_map" "geom_map" "geom_raster" "geom_raster" "geom_segment" "geom_smooth" "geom_tile"

"geom_bar" "geom_col" "geom_curve" "geom_dotplot" "geom_hex" "geom_label" "geom_path" "geom_qq" "geom_rect" "geom_sf" "geom_spoke" "geom_violin"

See <u>http://ggplot2.tidyverse.org/reference</u> for many more options

The Grammar of Graphics (gg): Geoms IV

Data

Aesthetics

Geoms

+ geom_*()

Geometric objects displayed on the plot

Or just start typing geom_ in R Studio!

ggplot(data = mpg)

ggplot(data = mpg)+
 aes(x = displ,
 y = hwy)

ggplot(data = mpg)+
 aes(x = displ,
 y = hwy)+
 geom_point()

ggplot(data = mpg)+
 aes(x = displ,
 y = hwy)+
 geom_point(aes(color = class))


```
ggplot(data = mpg)+
  aes(x = displ,
        y = hwy)+
  geom_point(aes(color = class))+
  geom_smooth()
```


More Geoms

Data

Aesthetics

Geoms

+ geom_*()

geom_*(aes, data, stat, position)

- data: geoms can have their own data
 - $\circ~$ has to map onto global coordinates
- aes: geoms can have their own aesthetics
 - inherits global aesthetics by default
 - different geoms have different available aesthetics

Change Our Plot

More Geoms II

Data

Aesthetics

Geoms

+ geom_*()

geom_*(aes, data, stat, position)

- stat: some geoms statistically transform data
 - geom_histogram() uses stat_bin() to group observations into bins
- position: some adjust location of objects

o dodge, stack, jitter

ggplot(data = mpg)+
 aes(x = class,
 y = hwy)+
 geom_boxplot()

ggplot(data = mpg)+
 aes(x = class)+
 geom_bar()

ggplot(data = mpg)+
aes(x = class,
 fill = drv)+
geom_bar()


```
ggplot(data = mpg)+
  aes(x = class,
     fill = drv)+
  geom_bar(position = "dodge")
```


Back to the Original (and saving it)

p # show plot

The Grammar of Graphics (gg): Facets I

p + facet_wrap(~year)

Data

Aesthetics

Geoms

Facets

- + facet_wrap()
- + facet_grid()

The Grammar of Graphics (gg): Facets II

p + facet_grid(cyl~year)

Data

Aesthetics

Geoms

Facets

- + facet_wrap()
- + facet_grid()

The Grammar of Graphics (gg): Labels

Data

Aesthetics

Geoms

Facets

Labels

+ labs()

p + facet_wrap(~year)+
labs(x = "Engine Displacement (Liters)",
 y = "Highway MPG",
 title = "Car Mileage and Displacement",
 subtitle = "More Displacement Lowers Highway MPG",
 caption = "Source: EPA",
 color = "Vehicle Class")

The Grammar of Graphics (gg): Scales

Data

Aesthetics

Geoms

Facets

Labels

Scales

+ scale_*_*()

scale+_+<aes>+_+<type>+()

- <aes>: parameter you want to adjust
- <type:type of parameter
- I want to change my discrete x-axis: scale_x_discrete()
- I want to change my continuous y-axis: scale_y_continuous()
- I want to rescale x-axis to log: scale_x_log10()
- I want to use a different color palette: scale_fill_discrete(),

The Grammar of Graphics (gg): Scales

```
ggplot(data = mpg)+
 aes(x = displ,
        y = hwy)+
 geom point(aes(color = class))+
 geom_smooth()+
 facet wrap(~year)+
 labs(x = "Engine Displacement (Liter
       y = "Highway MPG",
      title = "Car Mileage and Displa
       subtitle = "More Displacement L
       caption = "Source: EPA",
       color = "Vehicle Class")+
 scale_color_viridis_d()
```


The Grammar of Graphics (gg): Themes

Data

Aesthetics

Geoms

Facets

Labels

Scales

Theme

Theme changes appearance of plot decorations (things not mapped to data)

- Some themes that come with ggplot2:
- + theme_bw()
- + theme_dark()
- + theme_gray()
- + theme_minimal()
- + theme_light()
- + theme_classic()

The Grammar of Graphics (gg): Themes

Data

Aesthetics

Geoms

Facets

Labels

Scales

Theme

Theme changes appearance of plot decorations (things not mapped to data)

- Many parameters we could change
- Global options: line, rect, text, title
- axis: x-, y-, or other axis title, ticks, lines
- legend: plot legends for fill or color
- panel: actual plot area
- plot: whole image
- strip:facet labels

The Grammar of Graphics (gg): Themes

```
ggplot(data = mpg)+
 aes(x = displ,
        y = hwy)+
 geom point(aes(color = class))+
 geom_smooth()+
 facet wrap(~year)+
 labs(x = "Engine Displacement (Liter
       y = "Highway MPG",
      title = "Car Mileage and Displa
       subtitle = "More Displacement L
       caption = "Source: EPA",
       color = "Vehicle Class")+
 scale_color_viridis_d()+
 theme bw()
```


The Grammar of Graphics (gg): Themes II

```
ggplot(data = mpg)+
 aes(x = displ,
        y = hwy)+
 geom point(aes(color = class))+
 geom_smooth()+
 facet wrap(~year)+
 labs(x = "Engine Displacement (Liter
       y = "Highway MPG",
       title = "Car Mileage and Displa
       subtitle = "More Displacement L
       caption = "Source: EPA",
       color = "Vehicle Class")+
 scale_color_viridis_d()+
 theme minimal()
```


The Grammar of Graphics (gg): Themes III

```
ggplot(data = mpg)+
 aes(x = displ,
        y = hwy)+
 geom point(aes(color = class))+
 geom_smooth()+
 facet wrap(~year)+
 labs(x = "Engine Displacement (Liter
       y = "Highway MPG",
      title = "Car Mileage and Displa
       subtitle = "More Displacement L
       caption = "Source: EPA",
       color = "Vehicle Class")+
 scale color viridis d()+
 theme minimal()+
 theme(text = element text(family = "
```


The Grammar of Graphics (gg): Themes III

```
ggplot(data = mpg)+
 aes(x = displ,
        y = hwy)+
 geom point(aes(color = class))+
 geom_smooth()+
 facet wrap(~year)+
 labs(x = "Engine Displacement (Liter
       y = "Highway MPG",
       title = "Car Mileage and Displa
       subtitle = "More Displacement L
       caption = "Source: EPA",
       color = "Vehicle Class")+
 scale color viridis d()+
 theme minimal()+
 theme(text = element text(family = "
        legend.position="bottom")
```


The Grammar of Graphics (gg): Themes (ggthemes)

• ggthemes package adds some other nice themes

install if you don't have it
install.packages("ggthemes")
library("ggthemes") # load package

Data

Aesthetics

Geoms

Facets

Labels

Scales

Theme

The Grammar of Graphics (gg): Themes IV

```
library("ggthemes")
ggplot(data = mpg)+
 aes(x = displ,
        v = hwv)+
 geom point(aes(color = class))+
 geom smooth()+
 facet wrap(~year)+
 labs(x = "Engine Displacement (Liter
       y = "Highway MPG",
       title = "Car Mileage and Displa
       subtitle = "More Displacement L
       caption = "Source: EPA",
       color = "Vehicle Class")+
 scale color viridis d()+
 theme economist()+
 theme(text = element text(family = "
        legend.position="bottom")
```


The Grammar of Graphics (gg): Themes V

```
library("ggthemes")
ggplot(data = mpg)+
 aes(x = displ,
        v = hwv)+
 geom point(aes(color = class))+
 geom smooth()+
 facet wrap(~year)+
 labs(x = "Engine Displacement (Liter
       y = "Highway MPG",
       title = "Car Mileage and Displa
       subtitle = "More Displacement L
       caption = "Source: EPA",
       color = "Vehicle Class")+
 scale color viridis d()+
 theme fivethirtyeight()+
 theme(text = element text(family = "
        legend.position="bottom")
```

Car Mileage and Displacement More Displacement Lowers Highway MPG 2008 1999 40 30 20 pickup suv 2seater midsize Vehicle Class • compact • minivan • subcompact

Source: EPA

Some Troubleshooting

Global vs. Local Aesthetics

- aes() can go in base (data) layer and/or in individual geom() layers
- All geoms will inherit global aes from data layer unless overridden

Mapped vs. Set Aesthetics

- aesthetics such as size and color can be mapped from data or set to a single value
- Map *inside* of aes(), set *outside* of aes()

Go Crazy I


```
labs(fill = "Population per\nsquare
  theme_map() +
  guides(fill = guide_legend(nrow =
    theme(legend.position = "bottom")
```


Go Crazy II

Data Visualization and Graphic Design Principles

- We will return to various graphics as we cover descriptive statistics and regression
- I hope to cover some basic principles of good graphic design for figures and plots
 - If not in class, I will make a page on the website, and/or a video

Remember:

Less is More

"Shoot me"

Less is More:

Remove to improve (the data-ink ratio)

Created by Darkhorse Analytics

www.darkhorseanalytics.com

Try to Show One Trend Really Clearly

Percentage of people who say it is "essential" to live in a democracy

Source: Yascha Mounk and Roberto Stefan Foa, "The Signs of Democratic Deconsolidation," Journal of Democracy | By The New York Times

Reference: R Studio Makes Great "Cheat Sheet"s!

RStudio® is a trademark of RStudio Inc. • CC RY SA RStudio • info@rstudio com • 844-448-1212 • rstudio com • Learn more at http://geplot2.tidyverse.org • geplot2.2.1.0 • Undated 2016-11

ggplot2

Reference

On ggplot2

- R Studio's ggplot2 Cheat Sheet
- ggplot2's website reference section
- Hadley Wickham's <u>R for Data Science book chapter on ggplot2</u>
- STHDA's <u>be awesome in ggplot2</u>
- r-statistic's top 50 ggplot2 visualizations

On data visualization

- Kieran Healy's Data Visualization: A Practical Guide
- Claus Wilke's <u>Fundamentals of Data Visualization</u>
- PolicyViz <u>Better Presentations</u>
- Karl Broman's <u>How to Display Data Badly</u>

