2.3 - OLS Linear Regression
ECON 480 • Econometrics • Fall 2020
Ryan Safner
Assistant Professor of Economics
✓ safner@hood.edu
○ ryansafner/metricsF20
ⓒ metricsF20.classes.ryansafner.com

Exploring Relationships

Bivariate Data and Relationships

- We looked at single variables for descriptive statistics
- Most uses of statistics in economics and business investigate relationships *between* variables

Examples

- # of police & crime rates
- healthcare spending & life expectancy
- government spending & GDP growth
- carbon dioxide emissions & temperatures

Bivariate Data and Relationships

- We will begin with **bivariate** data for relationships between *X* and *Y*
- Immediate aim is to explore associations between variables, quantified with correlation and linear regression
- Later we want to develop more sophisticated tools to argue for causation

Bivariate Data: Spreadsheets I

econfreedom <- read_csv("econfreedom.csv")
head(econfreedom)</pre>

##	#	A tib	ole: 6 x 6				
##		X1	Country	IS0	ef	gdp	continent
##		<dbl></dbl>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<chr></chr>
##	1	1	Albania	ALB	7.4	4543.	Europe
##	2	2	Algeria	DZA	5.15	4784.	Africa
##	3	3	Angola	AG0	5.08	4153.	Africa
##	4	4	Argentina	ARG	4.81	10502.	Americas
##	5	5	Australia	AUS	7.93	54688.	Oceania
##	6	6	Austria	AUT	7.56	47604.	Europe

- **Rows** are individual observations (countries)
- **Columns** are variables on all individuals

Bivariate Data: Spreadsheets II

econfreedom %>%
glimpse()

Rows: 112

Columns: 6

Bivariate Data: Spreadsheets III

source("summaries.R") # use my summary_table function

```
econfreedom %>%
    summary_table(ef, gdp)
```

Variable	Obs	Min	Q1	Median	Q3	Мах	Mean	Std. Dev.
ef	112	4.81	6.42	7.0	7.40	8.71	6.86	0.78
gdp	112	206.71	1307.46	5123.3	17302.66	89590.81	14488.49	19523.54

Bivariate Data: Scatterplots

- The best way to visualize an association between two variables is with a scatterplot
- Each point: pair of variable values $(x_i, y_i) \in X, Y$ for observation i

```
library("ggplot2")
ggplot(data = econfreedom)+
    aes(x = ef,
        y = gdp)+
    geom_point(aes(color = continent),
            size = 2)+
    labs(x = "Economic Freedom Index (2014)",
        y = "GDP per Capita (2014 USD)",
        color = "")+
    scale_y_continuous(labels = scales::dollar)+
    theme_pander(base_family = "Fira Sans Condensed",
            base_size=20)+
    theme(legend.position = "bottom")
```


Associations

- Look for association between independent and dependent variables
- 1. **Direction**: is the trend positive or negative?
- 2. **Form**: is the trend linear, quadratic, something else, or no pattern?
- 3. **Strength**: is the association strong or weak?
- 4. **Outliers**: do any observations break the trends above?

Quantifying Relationships

Covariance

• For any two variables, we can measure their **sample covariance**, cov(X, Y) or $s_{X,Y}$ to quantify how they vary *together*[†]

$$s_{X,Y} = E\left[(X - \bar{X})(Y - \bar{Y})\right]$$

- Intuition: if X is above its mean, would we expect Y:
 - \circ to be *above* its mean also (X and Y covary *positively*)
 - \circ to be *below* its mean (X and Y covary *negatively*)
- Covariance is a common measure, but the units are meaningless, thus we rarely need to use it so **don't worry about learning the formula**

Henceforth we limit all measures to *samples*, for convenience. Population covariance is denoted $\sigma_{X,Y}$

Covariance, in R

base R
cov(econfreedom\$ef,econfreedom\$gdp)

[1] 8922.933

dplyr

```
econfreedom %>%
  summarize(cov = cov(ef,gdp))
```

A tibble: 1 x 1
cov
<dbl>
1 8923.

8923 what, exactly?

Correlation

• More convenient to *standardize* covariance into a more intuitive concept: correlation, ρ or $r \in [-1, 1]$

$$r_{X,Y} = \frac{s_{X,Y}}{s_X s_Y} = \frac{cov(X,Y)}{sd(X)sd(Y)}$$

- Simply weight covariance by the product of the standard deviations of X and Y
- Alternatively, take the average[†] of the product of standardized (Z-scores for) each (x_i, y_i) pair:[‡]

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \bar{X}}{s_X} \right) \left(\frac{y_i - \bar{Y}}{s_Y} \right)$$
$$r = \frac{1}{n-1} \sum_{i=1}^{n} Z_X Z_Y$$

[†] Over n-1, a *sample* statistic!

[‡] See today's <u>class notes page</u> for example code to calculate correlation "by hand" in R using the second method.

Correlation: Interpretation

• Correlation is standardized to

 $-1 \le r \le 1$

- \circ Negative values \implies negative association
- \circ Positive values \implies positive association
- \circ Correlation of 0 \implies no association
- \circ As $|r| \rightarrow 1 \implies$ the stronger the association
- \circ Correlation of $|r| = 1 \implies$ perfectly linear

Guess the Correlation!

new Game Two Plavers Score Board ABOUT Settings

HIGH SCORE

Guess the Correlation Game

Correlation and Covariance in R

Base r: cov or cor(df\$x, df\$y)

cov(econfreedom\$ef, econfreedom\$gdp)

[1] 8922.933

cor(econfreedom\$ef, econfreedom\$gdp)

[1] 0.5867018

tidyverse method

econfreedom %>%
 summarize(covariance = cov(ef, gdp),
 correlation = cor(ef, gdp))

A tibble: 1 x 2
covariance correlation
<dbl> <dbl>
1 8923. 0.587

Correlation and Covariance in R I

- corrplot is a great package (install and then load) to **visualize** correlations in data

```
library(corrplot) # see more at https://github.com/taiyun/corrplot
library(RColorBrewer) # for color scheme used here
library(gapminder) # for gapminder data
```

```
# need to make a corelation matrix with cor(); can only include numeric variables
gapminder_cor<- gapminder %>%
dplyr::select(gdpPercap, pop, lifeExp)
```

```
# make a correlation table with cor (base R)
gapminder_cor_table<-cor(gapminder_cor)</pre>
```

```
# view it
gapminder_cor_table
```

##		gdpPercap	рор	lifeExp
##	gdpPercap	1.00000000	-0.02559958	0.58370622
##	рор	-0.02559958	1.00000000	0.06495537
##	lifeExp	0.58370622	0.06495537	1.00000000

Correlation and Covariance in R II

```
corrplot(gapminder_cor_table, type="upper",
    method = "circle",
    order = "alphabet",
    col = viridis::viridis(100)) # custom
```


Correlation and Endogeneity

- Your Occasional Reminder: Correlation does not imply causation!
 - I'll show you the difference in a few weeks (when we can actually talk about causation)
- If X and Y are strongly correlated, X can still be **endogenous**!
- See <u>today's class notes page</u> for more on Covariance and Correlation

Always Plot Your Data!

Linear Regression

Fitting a Line to Data

• If an association appears linear, we can estimate the equation of a line that would "fit" the data

Y = a + bX

- Recall a linear equation describing a line contains:^{.magenta}
 - \circ *a*: vertical intercept
 - *b*: slope

Fitting a Line to Data

• If an association appears linear, we can estimate the equation of a line that would "fit" the data

Y = a + bX

- Recall a linear equation describing a line contains:
 - \circ *a*: vertical intercept
 - $\circ b$: slope
- How do we choose the equation that *best* fits the data?

Fitting a Line to Data

• If an association appears linear, we can estimate the equation of a line that would "fit" the data

Y = a + bX

- Recall a linear equation describing a line contains:
 - \circ *a*: vertical intercept
 - $\circ b$: slope
- How do we choose the equation that *best* fits the data?

Population Linear Regression Model

- Linear regression lets us estimate the slope of the **population** regression line between X and Y using **sample** data
- We can make **statistical inferences** about the population slope coefficient
 - eventually & hopefully: a *causal* inference
- slope = $\frac{\Delta Y}{\Delta X}$: for a 1-unit change in X, how many units will this *cause* Y to change?

Class Size Example

Example: What is the relationship between class size and educational performance?

Class Size Example: Load the Data

install.packages("haven") # install for first use
library("haven") # load for importing .dta files
CASchool<-read_dta("../data/caschool.dta")</pre>

Class Size Example: Look at the Data I

glimpse(CASchool)

Rows: 420

Columns: 21

\$ observat <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1... ## \$ dist_cod <dbl> 75119, 61499, 61549, 61457, 61523, 62042, 68536, 63834, 6233... ## \$ county <chr> "Alameda", "Butte", "Butte", "Butte", "Butte", "Fresno", "Sa... ## \$ district <chr> "Sunol Glen Unified", "Manzanita Elementary", "Thermalito Un... ## \$ gr span <chr> "KK-08", "KK-08", "KK-08", "KK-08", "KK-08", "KK-08", "KK-08", "KK-08... ## \$ enrl tot <dbl> 195, 240, 1550, 243, 1335, 137, 195, 888, 379, 2247, 446, 98... ## \$ teachers <dbl> 10.90, 11.15, 82.90, 14.00, 71.50, 6.40, 10.00, 42.50, 19.00... ## \$ calw pct <dbl> 0.5102, 15.4167, 55.0323, 36.4754, 33.1086, 12.3188, 12.9032... ## \$ meal pct <dbl> 2.0408, 47.9167, 76.3226, 77.0492, 78.4270, 86.9565, 94.6237... ## \$ computer <dbl> 67, 101, 169, 85, 171, 25, 28, 66, 35, 0, 86, 56, 25, 0, 31,... ## \$ testscr <dbl> 690.80, 661.20, 643.60, 647.70, 640.85, 605.55, 606.75, 609.... ## \$ comp stu <dbl> 0.34358975, 0.42083332, 0.10903226, 0.34979424, 0.12808989, ... ## \$ expn stu <dbl> 6384.911, 5099.381, 5501.955, 7101.831, 5235.988, 5580.147, ... ## \$ str <dbl> 17.88991, 21.52466, 18.69723, 17.35714, 18.67133, 21.40625, ... ## \$ avginc <dbl> 22.690001, 9.824000, 8.978000, 8.978000, 9.080333, 10.415000... ## \$ el pct <dbl> 0.000000, 4.583333, 30.000002, 0.000000, 13.857677, 12.40875...

Class Size Example: Look at the Data II

observat	dist_cod	county	district	gr_span	enrl_tot	teachers	calw_pct	meal_pct	computer	testscr	comp_stu	expn_stu	str	avginc	el_pct	read_scr	math_scr	aowijef	es_pct	es_frac
1	75119	Alameda	Sunol Glen Unified	KK-08	195	10.90	0.5102	2.0408	67	690.80	0.3435898	6384.911	17.88991	22.690001	0.000000	691.6	690.0	35.77982	1.000000	0.0100000
2	61499	Butte	Manzanita Elementary	KK-08	240	11.15	15.4167	47.9167	101	661.20	0.4208333	5099.381	21.52466	9.824000	4.583334	660.5	661.9	43.04933	3.583334	0.0358333
3	61549	Butte	Thermalito Union Elementary	KK-08	1550	82.90	55.0323	76.3226	169	643.60	0.1090323	5501.955	18.69723	8.978000	30.000002	636.3	650.9	37.39445	29.000002	0.2900000
4	61457	Butte	Golden Feather Union Elementary	KK-08	243	14.00	36.4754	77.0492	85	647.70	0.3497942	7101.831	17.35714	8.978000	0.000000	651.9	643.5	34.71429	1.000000	0.0100000
5	61523	Butte	Palermo Union Elementary	KK-08	1335	71.50	33.1086	78.4270	171	640.85	0.1280899	5235.988	18.67133	9.080333	13.857677	641.8	639.9	37.34266	12.857677	0.1285768
6	62042	Fresno	Burrel Union Elementary	KK-08	137	6.40	12.3188	86.9565	25	605.55	0.1824818	5580.147	21.40625	10.415000	12.408759	605.7	605.4	42.81250	11.408759	0.1140876

Class Size Example: Scatterplot

Class Size Example: Slope I

• If we change (Δ) the class size by an amount, what would we expect the change in test scores to be?

в —	change in test score	Δ test score
μ –	change in class size	 Δ class size

• If we knew β , we could say that changing class size by 1 student will change test scores by β

Class Size Example: Slope II

• Rearranging:

 Δ test score = $\beta \times \Delta$ class size

Class Size Example: Slope II

• Rearranging:

 Δ test score = $\beta \times \Delta$ class size

• Suppose $\beta = -0.6$. If we shrank class size by 2 students, our model predicts:

 Δ test score = $-2 \times \beta$ Δ test score = -2×-0.6 Δ test score = 1.2

Class Size Example: Slope and Average Effect

test score = $\beta_0 + \beta_1 \times \text{class size}$

- The line relating class size and test scores has the above equation
- β_0 is the **vertical-intercept**, test score where class size is 0
- β_1 is the **slope** of the regression line
- This relationship only holds on average for all districts in the population, *individual* districts are also affected by other factors

Class Size Example: Marginal Effects

• To get an equation that holds for *each* district, we need to include other factors

test score = $\beta_0 + \beta_1$ class size + other factors

- For now, we will ignore these until Unit III
- Thus, $\beta_0 + \beta_1$ class size gives the **average effect** of class sizes on scores
- Later, we will want to estimate the marginal effect (causal effect) of each factor on an individual district's test score, holding all other factors constant

Econometric Models Overview

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u$$

- *Y* is the **dependent variable** of interest
 - AKA "response variable," "regressand," "Left-hand side (LHS) variable"
- X_1 and X_2 are **independent variables**
 - AKA "explanatory variables", "regressors," "Right-hand side (RHS) variables", "covariates"
- Our data consists of a spreadsheet of observed values of (X_{1i}, X_{2i}, Y_i)
- To model, we "regress Y on X_1 and X_2 "
- β₀ and β₁ are parameters that describe the population relationships between the variables
 o unknown! to be estimated!
- *u* is the random **error term**
 - **'U'nobservable**, we can't measure it, and must model with assumptions about it

The Population Regression Model

- How do we draw a line through the scatterplot? We do not know the "true" β_0 or β_1
- We do have data from a *sample* of class sizes and test scores[†]
- So the real question is, how can we estimate β_0 and β_1 ?

[†] Data are student-teacher-ratio and average test scores on Stanford 9 Achievement Test for 5th grade students for 420 K-6 and K-8 school districts in California in 1999, (Stock and Watson, 2015: p. 141)

• Suppose we have some data points

- Suppose we have some data points
- We add a line

- Suppose we have some data points
- We add a line
- The **residual**, \hat{u} of each data point is the difference between the **actual** and the **predicted** value of *Y* given *X*:

$$u_i = Y_i - \hat{Y}_i$$

- Suppose we have some data points
- We add a line
- The **residual**, \hat{u} of each data point is the difference between the **actual** and the **predicted** value of *Y* given *X*:

$$u_i = Y_i - \hat{Y}_i$$

• We square each residual

- Suppose we have some data points
- We add a line
- The **residual**, \hat{u} of each data point is the difference between the **actual** and the **predicted** value of *Y* given *X*:

$$u_i = Y_i - \hat{Y}_i$$

- We square each residual
- Add all of these up: Sum of Squared Errors (SSE)

$$SSE = \sum_{i=1}^{n} u_i^2$$

- Suppose we have some data points
- We add a line
- The **residual**, \hat{u} of each data point is the difference between the **actual** and the **predicted** value of *Y* given *X*:

$$u_i = Y_i - \hat{Y}_i$$

- We square each residual
- Add all of these up: Sum of Squared Errors (SSE)

$$SSE = \sum_{i=1}^{n} u_i^2$$

• The line of best fit *minimizes* SSE

Ordinary Least Squares Estimators

- The Ordinary Least Squares (OLS) estimators of the unknown population parameters β_0 and β_1 , solve the calculus problem:

• Intuitively, OLS estimators minimize the average squared distance between the actual values (Y_i) and the predicted values (\hat{Y}_i) along the estimated regression line

The OLS Regression Line

- The OLS regression line or sample regression line is the linear function constructed using the OLS estimators:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

- $\hat{\beta}_0$ and $\hat{\beta}_1$ ("beta 0 hat" & "beta 1 hat") are the **OLS estimators** of population parameters β_0 and β_1 using sample data
- The predicted value of Y given X, based on the regression, is $E(Y_i|X_i) = \hat{Y}_i$
- The residual or prediction error for the i^{th} observation is the difference between observed Y_i and its predicted value, $\hat{u_i} = Y_i \hat{Y_i}$

The OLS Regression Estimators

• The solution to the SSE minimization problem yields:[†]

$$\hat{\beta}_{0} = \bar{Y} - \hat{\beta}_{1}\bar{X}$$

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}} = \frac{s_{XY}}{s_{X}^{2}} = \frac{cov(X, Y)}{var(X)}$$

[†] See <u>next's class notes page</u> for proofs.

Our Class Size Example in R

Class Size Scatterplot (Again)

scatter

• There is some true (unknown) population relationship:

test score = $\beta_0 + \beta_1 \times str$

•
$$\beta_1 = \frac{\Delta \text{test score}}{\Delta \text{str}} = ??$$

Class Size Scatterplot with Regression Line

scatter+

geom_smooth(method = "lm", color = "red")

OLS in R

Format for regression is $lm(y \sim x, data = df)$

- y is dependent variable (listed first!)
- ~ means "modeled by" or "explained by"
- x is the independent variable
- df is name of dataframe where data is stored

OLS in R II

look at reg object
school_reg

```
    Stored as an lm object called school_reg, a
list object
```

```
##
## Call:
## lm(formula = testscr ~ str, data = CASchool)
##
## Coefficients:
## (Intercept) str
## 698.93 -2.28
```

OLS in R III

- Looking at the summary, there's a lot of information here!
- These objects are cumbersome, come from a much older, pre-tidyverse epoch of base R
- Luckily, we now have tidy ways of working with regressions!

```
summary(school_reg) # get full summary
```

```
##
## Call:
## lm(formula = testscr ~ str, data = CASchool)
##
## Residuals:
      Min
               1Q Median
                               3Q
                                      Max
##
## -47.727 -14.251 0.483 12.822 48.540
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 698.9330
                           9.4675 73.825 < 2e-16 ***
## str
               -2.2798
                           0.4798 -4.751 2.78e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18.58 on 418 degrees of freedom
## Multiple R-squared: 0.05124, Adjusted R-squared: 0.04897
## F-statistic: 22.58 on 1 and 418 DF, p-value: 2.783e-06
```


Tidy OLS in R: broom I

• The tidy() function creates a *tidy* tibble of regression output

load packages
library(broom)

tidy regression output
tidy(school_reg)

A tibble: 2 x 5

##		term	estimate	<pre>std.error</pre>	statistic	p.value
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	(Intercept)	699.	9.47	73.8	6.57e-242
##	2	str	-2.28	0.480	-4.75	2.78e- 6

[†] See more at <u>broom.tidyverse.org</u>.

Tidy OLS in R: broom II

See more at <u>broom.tidyverse.org</u>.

- The broom package allows us to *tidy* up regression objects[†]
- The tidy() function creates a *tidy* tibble of regression output

load packages library(broom)
<pre># tidy regression output (with confidence intervals!) tidy(school_reg,</pre>
conf.int = TRUE)
A tibble: 2 x 7

##		term	estimate	std.error	statistic	p.value	conf.low	conf.high
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	(Intercept)	699.	9.47	73.8	6.57e-242	680.	718.
##	2	str	-2.28	0.480	-4.75	2.78e- 6	-3.22	-1.34

More broom Tools: glance

- glance() shows us a lot of overall regression statistics and diagnostics
 - $\circ~$ We'll interpret these in the next lecture and beyond

look at regression statistics and diagnostics
glance(school_reg)

A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
<dbl> <dbl > <db > <dbl > <db > <db

More broom Tools: augment

- augment() creates useful new variables in the stored lm object
 - \circ .fitted are fitted (predicted) values from model, i.e. \hat{Y}_i
 - \circ .resid are residuals (errors) from model, i.e. \hat{u}_i

add regression-based values to data
augment(school_reg)

##	# A	tibble	: 420 x	8					
##		testscr	str	.fitted	.resid	.std.resid	.hat	.sigma	.cooksd
##		<dbl></dbl>							
##	1	691.	17.9	658.	32.7	1.76	0.00442	18.5	0.00689
##	2	661.	21.5	650.	11.3	0.612	0.00475	18.6	0.000893
##	3	644.	18.7	656.	-12.7	-0.685	0.00297	18.6	0.000700
##	4	648.	17.4	659.	-11.7	-0.629	0.00586	18.6	0.00117
##	5	641.	18.7	656.	-15.5	-0.836	0.00301	18.6	0.00105
##	6	606.	21.4	650.	-44.6	-2.40	0.00446	18.5	0.0130
##	7	607.	19.5	654.	-47.7	-2.57	0.00239	18.5	0.00794
##	8	609	20.9	651.	-42.3	-2.28	0.00343	18.5	0.00895
##	9	612.	19.9	653.	-41.0	-2.21	0.00244	18.5	0.00597
##	10	613.	20.8	652.	-38.9	-2.09	0.00329	18.5	0.00723
##	#	with 41	10 more	rows					

Class Size Regression Result I

• Using OLS, we find:

test score = $689.9 - 2.28 \times str$

Class Size Regression Result II

• There's a great package called equationatic that prints this equation in markdown or ET_EX .

$$testscr = 698.93 - 2.28(str) + \epsilon$$

Here was my code:

```
# install.packages("equatiomatic") # install for first use
library(equatiomatic) # load it
extract_eq(school_reg, # regression lm object
    use_coefs = TRUE, # use names of variables
    coef_digits = 2, # round to 2 digits
    fix_signs = TRUE) # fix negatives (instead of + -)
```

```
## $$
## \operatorname{testscr} = 698.93 - 2.28(\operatorname{str}) + \epsilon
## $$
```

Class Size Regression: A Data Point

• One district in our sample is Richmond, CA:

• Predicted value:

Test Score_{Richmond} = $698 - 2.28(22) \approx 648$

• Residual

 $\hat{u}_{Richmond} = 672 - 648 \approx 24$

