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Why Uncertainty Matters



We use econometrics to identify causal
relationships and make inferences about them

�. Problem for identification: endogeneity

 is exogenous if 
 is endogenous if 

�. Problem for inference: randomness

Data is random due to natural sampling
variation
Taking one sample of a population will yield
slightly different information than another
sample of the same population

Recall: The Two Big Problems with Data

X cor(x, u) = 0

X cor(x, u) ≠ 0



Distributions of the OLS Estimators

OLS estimators  and  are computed from a finite (specific) sample of data

Our OLS model contains 2 sources of randomness:

Modeled randomness:  includes all factors affecting  other than 

different samples will have different values of those other factors 

Sampling randomness: different samples will generate different OLS estimators

Thus,  are also random variables, with their own sampling distribution
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The Two Problems: Where We're Heading...Ultimately
Sample  Population  Unobserved Parameters

We want to identify causal relationships between population variables

Logically first thing to consider
Endogeneity problem

We'll use sample statistics to infer something about population parameters

In practice, we'll only ever have a finite sample distribution of data
We don't know the population distribution of data
Randomness problem

→

⏟statistical inference

→

⏟causal indentification



Population Population relationship

Why Sample vs. Population Matters

= 3.24 + 0.44 +Yi Xi ui

= + +Yi β0 β1Xi ui



Sample 1: 30 random individuals Population relationship 

Sample relationship 

Why Sample vs. Population Matters

= 3.24 + 0.44 +Yi Xi ui

= 3.19 + 0.47Y ̂ 
i Xi



Sample 2: 30 random individuals Population relationship 

Sample relationship 

Why Sample vs. Population Matters

= 3.24 + 0.44 +Yi Xi ui

= 4.26 + 0.25Y ̂ 
i Xi



Sample 3: 30 random individuals Population relationship 

Sample relationship 

Why Sample vs. Population Matters

= 3.24 + 0.44 +Yi Xi ui

= 2.91 + 0.46Y ̂ 
i Xi



Let's repeat this process 10,000 times!

This exercise is called a (Monte Carlo)
simulation

I'll show you how to do this next class
with the infer  package

Why Sample vs. Population Matters



On average estimated regression lines from our
hypothetical samples provide an unbiased
estimate of the true population regression line

However, any individual line (any one sample)
can miss the mark

This leads to uncertainty about our estimated
regression line

Remember, we only have one sample in
reality!
This is why we care about the standard error

of our line: !

Why Sample vs. Population Matters
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Confidence Intervals



Statistical Inference

Sample  Population  Unobserved Parameters− →−−−−−−−−−−
statistical inference

− →−−−−−−−−−−−
causal indentification



Statistical Inference

Sample  Population  Unobserved Parameters

So what we naturally want to start doing is inferring what the true population regression
model is, using our estimated regression model from our sample

We can’t yet make causal inferences about whether/how  causes 
coming after the midterm!

− →−−−−−−−−−−
statistical inference

− →−−−−−−−−−−−
causal indentification

= + X = + X +Yi
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^

− →−−−−−−−−
🤞  hopefully 🤞
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Estimation and Statistical Inference
Our problem with uncertainty is we don’t know whether our sample estimate is close or far
from the unknown population parameter

But we can use our errors to learn how well our model statistics likely estimate the true
parameters

Use  and its standard error,  for statistical inference about true 

We have two options...
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Point estimate

Use our  and  to determine
whether we have statistically significant
evidence to reject a hypothesized 

Confidence interval

Use  and  to create an range of
values that gives us a good chance of
capturing the true 

Estimation and Statistical Inference
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Accuracy vs. Precision

More typical in econometrics to do hypothesis testing (next class)



We can generate our confidence interval
by generating a “bootstrap” sampling
distribution

This takes our sample data, and
resamples it by selecting random
observations with replacement

This allows us to approximate the

sampling distribution of  by
simulation!

Generating Confidence Intervals

β1
^



Confidence Intervals Using the infer Package



The infer  package allows you to do statistical inference in
a tidy  way, following the philosophy of the tidyverse

# install first!
install.packages("infer")

# load
library(infer)

Confidence Intervals Using the infer Package



infer  allows you to run through these steps manually to
understand the process:

�. specify()  a model

�. generate()  a bootstrap distribution

�. calculate()  the confidence interval

�. visualize()  with a histogram (optional)

Confidence Intervals with the infer Package I



Confidence Intervals with the infer Package II



Confidence Intervals with the infer Package II



Confidence Intervals with the infer Package II



Confidence Intervals with the infer Package II



Confidence Intervals with the infer Package II



Our Sample

term
<chr>

estimate
<dbl>

std.error
<dbl>

(Intercept) 698.932952 9.4674914
str -2.279808 0.4798256

2 rows | 1-3 of 5 columns

Another “Sample”

term
<chr>

estimate
<dbl>

std.error
<dbl>

(Intercept) 708.270835 9.5041448
str -2.797334 0.4802065

2 rows | 1-3 of 5 columns

👆 Bootstrapped from Our Sample

Bootstrapping

Now we want to do this 1,000 times to simulate the unknown sampling distribution of β1
^



The infer Pipeline: Specify



Specify

data %>%  specify(y ~ x)

Take our data and pipe it into the specify()
function, which is essentially a lm()  function for
regression (for our purposes)

CASchool %>%
  specify(testscr ~ str)

testscr
<dbl>

str
<dbl>

690.80 17.88991
661.20 21.52466
643.60 18.69723
647.70 17.35714
640.85 18.67133

5 rows

The infer Pipeline: Specify



The infer Pipeline: Generate



Specify

Generate

%>% generate(reps = n,
type = "bootstrap")

Now the magic starts, as we run a number of
simulated samples

Set the number of reps  and set type  to
"bootstrap"

CASchool %>%
  specify(testscr ~ str) %>%
  generate(reps = 1000,
           type = "bootstrap")

The infer Pipeline: Generate



Specify

Generate

%>% generate(reps = n,
type = "bootstrap")

Next1 2 3 4 5 6 ... 1000Previous

replicate
<int>

testscr
<dbl>

str
<dbl>

1 642.20 19.22221
1 664.15 19.93548
1 671.60 20.34927
1 640.90 19.59016
1 677.25 19.34853
1 672.20 20.20000
1 621.40 22.61905
1 657.00 20.86808
1 664.95 25.80000
1 635.20 17.75499

1-10 of 10,000 rows

replicate : the “sample” number (1-1000)

creates x  and y  values (data points)

The infer Pipeline: Generate



Specify

Generate

Calculate

%>% calculate(stat =
"slope")

CASchool %>%
  specify(testscr ~ str) %>%
  generate(reps = 1000,
           type = "bootstrap") %>%
  calculate(stat = "slope")

For each of the 1,000 replicates, calculate slope  in lm(testscr ~
str)

Calls it the stat

The infer Pipeline: Calculate



Specify

Generate

Calculate

%>% calculate(stat =
"slope")

Next1 2 3 4 5 6 ... 100Previous

replicate
<int>

stat
<dbl>

1 -3.0370939
2 -2.2228021
3 -2.6601745
4 -3.5696240
5 -2.0007488
6 -2.0979764
7 -1.9015875
8 -2.5362338
9 -2.3061820

10 -1.9369460

1-10 of 1,000 rows

The infer Pipeline: Calculate



Specify

Generate

Calculate

%>% calculate(stat =
"slope")

boot <- CASchool %>% #<< # save this
  specify(testscr ~ str) %>%
  generate(reps = 1000,
           type = "bootstrap") %>%
  calculate(stat = "slope")

boot  is (our simulated) sampling distribution of !

We can now use this to estimate the confidence

interval from our 

And visualize it

The infer Pipeline: Calculate

β1
^

= −2.28β1
^



A 95% confidence interval is the middle
95% of the sampling distribution

lower
<dbl>

upper
<dbl>

-3.340545 -1.238815

1 row

Confidence Interval

sampling_dist<-ggplot(data = boot)+
  aes(x = stat)+
  geom_histogram(color="white", fill = "#e64173
  labs(x = expression(hat(beta[1])))+
  theme_pander(base_family = "Fira Sans Condens
           base_size=20)
sampling_dist



A confidence interval is the middle 95%
of the sampling distribution

ci<-boot %>%
  summarize(lower = quantile(stat, 0.025),
            upper = quantile(stat, 0.975))
ci

lower
<dbl>

upper
<dbl>

-3.340545 -1.238815

1 row

Confidence Interval

sampling_dist+
  geom_vline(data = ci, aes(xintercept = lower)
  geom_vline(data = ci, aes(xintercept = upper)



Specify

Generate

Calculate

Get Confidence Interval

%>%
get_confidence_interval()

CASchool %>% #<< # save this
  specify(testscr ~ str) %>%
  generate(reps = 1000,
           type = "bootstrap") %>%
  calculate(stat = "slope") %>%
  get_confidence_interval(level = 0.95,
                          type = "se",
                          point_estimate = -2.28)

lower_ci
<dbl>

upper_ci
<dbl>

-3.273376 -1.286624

1 row

The infer Pipeline: Confidence Interval



Broom Can Estimate a Confidence Interval
tidy_reg <- school_reg %>% tidy(conf.int = T)
tidy_reg

term
<chr>

estimate
<dbl>

std.error
<dbl>

statistic
<dbl>

p.value
<dbl>

conf.low
<dbl>

conf.high
<dbl>

(Intercept) 698.932952 9.4674914 73.824514 6.569925e-242 680.32313 717.542779
str -2.279808 0.4798256 -4.751327 2.783307e-06 -3.22298 -1.336637

2 rows

# save and extract confidence interval
our_CI <- tidy_reg %>%
  filter(term == "str") %>%
  select(conf.low, conf.high)

our_CI

conf.low
<dbl>

conf.high
<dbl>

-3.22298 -1.336637

1 row



Specify

Generate

Calculate

Visualize

%>% visualize()

CASchool %>% #<< # save this
  specify(testscr ~ str) %>%
  generate(reps = 1000,
           type = "bootstrap") %>%
  calculate(stat = "slope") %>%
  visualize()

visualize()  is just a wrapper for ggplot()

The infer Pipeline: Confidence Interval



Specify

Generate

Calculate

Visualize

%>% visualize()

CASchool %>% #<< # save this
  specify(testscr ~ str) %>%
  generate(reps = 1000,
           type = "bootstrap") %>%
  calculate(stat = "slope") %>%
  visualize()+shade_ci(endpoints = our_CI)

The infer Pipeline: Confidence Interval



Confidence Intervals
In general, a confidence interval (CI) takes a point estimate and extrapolates it within some margin of error:

 point estimate — margin of error, point estimate + margin of error 

The main question is, how confident do we want to be that our interval contains the true parameter?

Larger confidence level, larger margin of error (and thus larger interval)

$1- \alpha$ is the confidence level of our confidence interval

$\alpha$ is the “significance level” that we use in hypothesis testing
: probability that the true mean is not contained within our interval

Typical levels: 90%, 95%, 99%

95% is especially common, 

( )

α

α = 0.05



Depending on our confidence level, we
are essentially looking for the center 

% of the sampling distribution

Puts  in each tail

Confidence Levels

(1 − α)

α

2



Recall the 68-95-99.7% empirical rule for
(standard) normal distributions!†

95% of data falls within 2 standard
deviations of the mean

Thus, in 95% of samples, the true
parameter is likely to fall within about 2
standard deviations of the sample
estimate

† I’m playing fast and loose here, we can’t actually use the normal distribution, we use the
Student’s t-distribution with n-k-1 degrees of freedom. But there’s no need to complicate
things you don’t need to know about. Look at today’s class notes for more.

Confidence Levels and the Empirical Rule

https://metricsf20.classes.ryansafner.com/class/2.6-class


Interpreting Confidence Intervals
So our confidence interval for our slope is $-3.22, -1.33), what does this mean?

❌ 95% of the time, the true effect of class size on test score will be between -3.22 and -1.33

❌ We are 95% confident that a randomly selected school district will have an effect of class
size on test score between -3.22 and -1.33

❌ The effect of class size on test score is -2.28 95% of the time.

✅ We are 95% confident that in similarly constructed samples, the true effect is between -3.22
and -1.33



Hypothesis Testing



Estimation and Hypothesis Testing I
We want to test if our estimates are statistically significant and they describe the
population

This is the "bread and butter" of inferential statistics and the purpose of regression

Examples:

Does reducing class size actually improve test scores?
Do more years of education increase your wages?
Is the gender wage gap between men and women really $0.77?

All modern science is built upon statistical hypothesis testing, so understand it well!



Estimation and Hypothesis Testing II
Note, we can test a lot of hypotheses about a lot of population parameters, e.g.

A population mean 
Example: average height of adults
A population proportion 
Example: percent of voters who voted for Trump
A difference in population means 
Example: difference in average wages of men vs. women
A difference in population proportions 
Example: difference in percent of patients reporting symptoms of drug A vs B
See all the possibilities in glorious detail in today's class notes

We will focus on hypotheses about population regression slope , i.e. the causal effect† of  on 

μ

p

−μA μB

−pA pB

( )β ̂ 
1 X Y

† With a model this simple, it's almost certainly not causal, but this is the ultimate direction we are heading...

https://metricsf20.classes.ryansafner.com/class/2.6-class


Null and Alternative Hypotheses I
All scientific inquiries begin with a null hypothesis  that proposes a specific value of a
population parameter

Notation: add a subscript 0:  (or , , etc)

We suggest an alternative hypothesis , often the one we hope to verify
Note, can be multiple alternative hypotheses: 

Ask: "Does our data (sample) give us sufficient evidence to reject  in favor of ?"
Note: the test is always about !
See if we have sufficient evidence to reject the status quo

( )H0

β1,0 μ0 p0

( )Ha

, , … ,H1 H2 Hn

H0 Ha

H0



Null and Alternative Hypotheses II
Null hypothesis assigns a value (or a range) to a population parameter

e.g.  or 
Most common is    has no effect on  (no slope for a line)
Note: always an equality!

Alternative hypothesis must mathematically contradict the null hypothesis
e.g.  or  or 
Note: always an inequality!

Alternative hypotheses come in two forms:
�. One-sided alternative:  or 
�. Two-sided alternative: 

Note this means either  or 

= 2β1 ≤ 20β1

= 0β1 ⟹ X Y

≠ 2β1 > 20β1 ≠ 0β1

>β1 H0 <β1 H0

≠β1 H0

<β1 H0 >β1 H0



Components of a Valid Hypothesis Test
All statistical hypothesis tests have the following components:

�. A null hypothesis, 

�. An alternative hypothesis, 

�. A test statistic to determine if we reject  when the statistic reaches a "critical value"

Beyond the critical value is the "rejection region", sufficient evidence to reject 

�. A conclusion whether or not to reject  in favor of 

H0

Ha

H0

H0

H0 Ha



Any sample statistic (e.g. ) will rarely be
exactly equal to the hypothesized population
parameter (e.g. )

Difference between observed statistic and true
paremeter could be because:

�. Parameter is not the hypothesized value  is
false)

�. Parameter is truly the hypothesized value  is
true) but sampling variability gave us a different
estimate

We cannot distinguish between these two
possibilities with any certainty

Type I and Type II Errors I

β1

^

β1

(H0

(H0



We can interpret our estimates
probabilistically as commiting one of two
types of error:

�. Type I error (false positive): rejecting 
when it is in fact true

Believing we found an important result
when there is truly no relationship

�. Type II error (false negative): failing to
reject  when it is in fact false

Believing we found nothing when there
was truly a relationship to find

Type I and Type II Errors II

H0

H0



Type I and Type II Errors III

Truth

Null is True Null is False

Judgment

Reject Null
TYPE I ERROR CORRECT

(False +) (True +)

Don't Reject Null
CORRECT TYPE II ERROR

(True -) (False -)

Depending on context, committing one type of error may be more serious than the other



Type I and Type II Errors IV

Truth

Defendant is Innocent Defendant is Guilty

Judgment

Convict
TYPE I ERROR CORRECT

(False +) (True +)

Acquit
CORRECT TYPE II ERROR

(True -) (False -)

Anglo-American common law presumes defendant is innocent: 

Jury judges whether the evidence presented against the defendant is plausible assuming the
defendant were in fact innocent

If highly improbable: sufficient evidence to reject  and convict

H0

H0



William Blackstone

(1723-1780)

"It is better that ten guilty persons escape than that
one innocent suffer."

Type I error is worse than a Type II error in law!

Type I and Type II Errors V

Blackstone, William, 1765-1770, Commentaries on the Laws of England



Type I and Type II Errors VI



Significance Level, , and Confidence Level 
The significance level, , is the probability of a Type I error

The confidence level is defined as 

Specify in advance an -level (0.10, 0.05, 0.01) with associated confidence level (90%,
95%, 99%)

The probability of a Type II error is defined as :

α 1 − α

α

α = P(Reject  |  is true)H0 H0

(1 − α)

α

β

β = P(Don't reject  |  is false)H0 H0



 and 

Truth

Null is True Null is False

Judgment

Reject Null
TYPE I ERROR CORRECT

α (1-β)

Don't Reject Null
CORRECT TYPE II ERROR

(1-α) β

α β



Power and p-values
The statistical power of the test is : the probability of correctly rejecting  when 

 is in fact false (e.g. not convicting an innocent person)

The -value or significance probability is the probability that, given the null hypothesis is
true, the test statistic from a random sample will be at least as extreme as the test statistic
of our sample

where  represents some test statistic
 is the test statistic we observe in our sample

More on this in a bit

(1 − β) H0

H0

Power = 1 − β = P(Reject  |  is false)H0 H0

p

p(δ ≥ |  is true)δi H0

δ

δi



p-Values and Statistical Significance
After running our test, we need to make a decision between the competing hypotheses

Compare -value with pre-determined  (commonly, , 95% confidence level)

If : statistically significant evidence sufficient to reject  in favor of 

Note this does not mean  is true! We merely have rejected !

If : insufficient evidence to reject 

Note this does not mean  is true! We merely have failed to reject !

p α α = 0.05

p < α H0 Ha

Ha H0

p ≥ α H0

H0 H0



Digression: p-Values and the Philosophy of
Science



Sir Ronald A. Fisher

(1890—1962)

"The null hypothesis is never proved or established,
but is possibly disproved, in the course of
experimentation. Every experiment may be said to
exist only in order to give the facts a chance of
disproving the null hypothesis."

1931, The Design of Experiments

Hypothesis Testing and the Philosophy of Science I



Modern philosophy of science is largely based
off of hypothesis testing and falsifiability, which
form the "Scientific Method"†

For something to be "scientific", it must be
falsifiable, or at least testable

Hypotheses can be corroborated with evidence,
but always tentative until falsified by data in
suggesting an alternative hypothesis

"All swans are white" is a hypothesis
rejected upon discovery of a single black
swan

Hypothesis Testing and the Philosophy of Science I

1 Note: economics is a very different kind of "science" with a different methodology!



Hypothesis Testing and p-Values
Hypothesis testing, confidence intervals, and p-values are probably the hardest thing to
understand in statistics



Fivethirtyeight: Not Even Scientists Can Easily Explain P-values

https://fivethirtyeight.com/features/not-even-scientists-can-easily-explain-p-values/

