3.4 — Multivariate OLS Estimators
ECON 480 » Econometrics * Fall 2020

Ryan Safner
Assistant Professor of Economics



mailto:safner@hood.edu
https://github.com/ryansafner/metricsF20
https://metricsf20.classes.ryansafner.com/

Outline




The Multivariate OLS Estimators




The Multivariate OLS Estimators

e By analogy, we still focus on the ordinary least squares (OLS) estimators of the unknown
population parameters g, f1, 2, -+ , P which solves:

i 12
o L N\ N\ N\ A
cmin 3 Y= (Bo + piXu + faXoi o+ fiX)
ﬂO’ﬂl’ﬂ27"'aﬁk =1 %,—/

Ui

o Again, OLS estimators are chosen to minimize the sum of squared errors (SSE)

N\
o I.e. sum of squared distances between actual values of Y; and predicted values Y;



The Multivariate OLS Estimators: FYI

Math FYI: in linear algebra terms, a regression model with 72 observations of k independent variables:

Y=Xf+u
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« The OLS estimator for /3 isﬁ = XX XY®

e Appreciate that | am saving you from such sorrow s



N\
The Sampling Distribution of /;

« For anyindividual f;, it has a sampling
distribution:

0.4 1

B~ N (BB se))

o We want to know its sampling distribution’s:

N\
o Center: E[/};|; what is the expected value of
our estimator?

Probability

N\
o Spread: se(/J;); how precise or uncertain is 0.1
our estimator?
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N\
The Sampling Distribution of /;

« For anyindividual f;, it has a sampling
distribution:

N N AN
B~ N (BB se))
o We want to know its sampling distribution’s:

N\
o Center: E[/};|; what is the expected value of
our estimator?

AN
o Spread: Se(ﬂj); how precise or uncertain s
our estimator?
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A
The Expected Value of /;: Bias




Exogeneity and Unbiasedness

As before, E[ﬁj] = f; when Xj is exogenous (i.e. cor(X;, u) = 0)

O-l/t
X:

We know the true E[,é\j] = p; + cor(X;, u)—
J
———

0O.V. Bias

If X; is endogenous (i.e. cor(X;, u) # 0), contains omitted variable bias

We can now try to quantify the omitted variable bias



Measuring Omitted Variable Bias |

e Suppose the of a relationship is:
Y; = po + p1Xai + poXoi + u;
e What happens when we run a regression and omit X»;?

e Suppose we estimate the following omitted regression of just Y¥; on X;; (omitting X»;):"

Y = ap + a1 Xq; +v;

" Note: | am using a's and v; only to denote these are different estimates than the model f's and u;



Measuring Omitted Variable Bias Ii

. are X1; and X»; correlated?

Run an auxiliary regression of X5; on X{; to see:"

X, = 09 + 01X1; + 7;

If o1 = 0, then X;; and X»; are not linearly related

If |01 | is very big, then X;; and X»; are strongly linearly related

" Note: | am using 8's and 7 to differentiate estimates for this model.



Measuring Omitted Variable Bias Il

o Now substitute our auxiliary regression between X»; and X;; into the frue model:
o We know X5; = 09 + 01Xy; + 7;

Y; = Po + b1 X1 + PoXoi + i




Measuring Omitted Variable Bias Il

o Now substitute our auxiliary regression between X»; and X;; into the frue model:
o We know X5; = 09 + 01Xy; + 7;

Yi = Po + b1 Xu + PoaXoi + u
Yi = Bo + Pi1Xui + B2 (S0 + 61X + 1) + us




Measuring Omitted Variable Bias Il

o Now substitute our auxiliary regression between X»; and X;; into the frue model:
o We know X5; = 09 + 01Xy; + 7;
Y; = fo + p1Xii + X0 + u
Yi = fo + Pi1Xui + B2 (S0 + 61X + 7)) + us
Y; = (Po + P200) + (P1 + 200)X1; + (Prri + uy)




Measuring Omitted Variable Bias Il

« Now substitute our auxiliary regression between X»; and X7, into the
o We know X5; = 09 + 01Xy; + 7;

Yi = Po + p1 X + P X0 +uy
Yi = Bo+ Pi1Xui + P2 (S0 + 61X + 1) + u;

Y; = (Po + P200) + (P1 + p200) X1 + (Por; + u;)

o aq Vi

o Now relabel each of the three terms as the OLS estimates (a's) and error (v;) from the omitted regression,
S0 we again have:

Yi=ag+ a1 Xy +v;
o Crucially, this means that our OLS estimate for X; in the omitted regression is:

ay = p1 + 0



Measuring Omitted Variable Bias IV

ay =1+ P2
o The Omitted Regression OLS estimate for Xi;, (ar1) picks up both:
1

1. The true effect of X3 on Y;: (f2)
o As pulled through the relationship between X and X5: (1)

o Recall our conditions for omitted variable bias from some variable Z;:
1) Z; must be a determinantof Y; — /), # 0
2) Z; must be correlatedwith X; — | # 0

« Otherwise, if Z; does not fit these conditions, &y = [ and the omitted regression is unbiased



Measuring OVB in Our Class Size Example |

e The “True” Regression (Y; on Xy; and X»;)

Test Score; = 686.03 — 1.10 STR; — 0.65 %EL,

(Intercept) 686.0322487 7.41131248 92.565554 3.871501e-280
str -11012959 0.38027832 -2.896026 3.978056e-03
el_pct -0.6497768 0.03934255 -16.515879 1.657506e-47

3 rows




Measuring OVB in Our Class Size Example II

e The “Omitted” Regression (Y; on just X;;)

Test Score; = 698.93 — 2.28 STR;

(Intercept) 698.932952 9.4674914 73.824514 6.569925e-242
str -2.279808 0.4798256 -4.751327 2.783307e-06

2 rows




Measuring OVB in Our Class Size Example Il

o The “Auxiliary” Regression (X»; on X7;)

%EL, = —19.85 + 1.81 STR,

(Intercept) -19.854055 91626044 -2.166857 0.0308099863
str 1.813719 0.4643735 3.905733 0.0001095165

2 rows




Measuring OVB in Our Class Size Example IV

“True” Regression o Omitted Regression a1 on STRis -2.28

Test Score; = 686.03 — 1.10 STR, — 0.65 %EL

“Omitted” Regression

Test Score; = 698.93 — 2.28 STR,

“Auxiliary” Regression

%EL, = —19.85 + 1.81 STR,;




Measuring OVB in Our Class Size Example IV

“True” Regression o Omitted Regression a1 on STRis -2.28
Test Score; = 686.03 — 1.10 STR; — 0.65 %EL a1 = [ + P26
“Omitted” Regression e The true effect of STR on Test Score: -1.10

Test Score; = 698.93 — 2.28 STR,

“Auxiliary” Regression

%EL, = —19.85 + 1.81 STR,;




Measuring OVB in Our Class Size Example IV

“True” Regression o Omitted Regression a1 on STR is -2.28
Test Score; = 686.03 — 1.10 STR; — 0.65 %EL ar = 1 + p261
“Omitted” Regression o The true effect of STR on Test Score: -1.10
Test Score; = 698.93 — 2.28 STR, « The true effect of %EL on Test Score: -0.65

“Auxiliary” Regression

%EL, = —19.85 + 1.81 STR,;




Measuring OVB in Our Class Size Example IV

“True” Regression

Omitted Regression a1 on STR is -2.28

Test Score; = 686.03 — 1.10 STR, — 0.65 %EL a; = 1 + p2bi

The true effect of STR on Test Score: -1.10

“Omitted” Regression

The true effect of %EL on Test Score: -0.65

Test Score; = 698.93 — 2.28 STR,

“Auxiliary” Regression The relationship between STR and %EL: 1.81

%EL,; = —19.85 + 1.81 STR,;




Measuring OVB in Our Class Size Example IV

“True” Regression Omitted Regression a1 on STRis -2.28

Test Score; = 686.03 — 1.10 STR, — 0.65 %EL a; = 1 + p2bi

The true effect of STR on Test Score: -1.10

“Omitted” Regression

The true effect of %EL on Test Score: -0.65

Test Score; = 698.93 — 2.28 STR,

“Auxiliary” Regression The relationship between STR and %EL: 1.81

@ = —19.85 + 1.81 STR, So, for the omitted regression:

—2.28 = —1.10 + (—0.65)(1.81)




Measuring OVB in Our Class Size Example IV

“True” Regression Omitted Regression a1 on STRis -2.28

Test Score; = 686.03 — 1.10 STR, — 0.65 %EL a; = 1 + p2bi

The true effect of STR on Test Score: -1.10

“Omitted” Regression

The true effect of %EL on Test Score: -0.65

Test Score; = 698.93 — 2.28 STR,

“Auxiliary” Regression The relationship between STR and %EL: 1.81

m = —19.85 + 1.81 STR, So, for the omitted regression:

—2.28 = —1.10 4+ (—0.65)(1.81)

—_———
0.V .Bias=—1.18




A
Precision of /;




N\
Precision of /7 |

C aﬂA - how precise are our estimates?
j

e Variance 62 or standard error aﬁA
ﬂ;‘ J

0.4 1

0.3 1

Probability

0.1

0.0 1

N



N\
Precision of /7 I

1 (SER)?

N\
) — X
var(;) 1 — RJZ n X var(X)

(- -

VIF

Se(ﬁj) = \/ var(/?l)

N
« Variation in fj; is affected by four things now":

1. Goodness of fit of the model (SER)

N\
o Larger SER — larger var(p;)
2. Sample size, n

N\
o Larger n — smaller var(p;)
3. Variance of X
AN
o Larger var(X) — smaller var(f;)

&, Variance Inflation Factor — 5
(1-R?)

N\
o Larger VIF, larger var(f;)
o This is the only new effect

TSee Class 2.5 for a reminder of variation with just one X variable.


https://metricsf20.classes.ryansafner.com/class/2.5-class

VIF and Multicollinearity |

e Two /ndependent variables are multicollinear:
cor(X;, X)) #0 Vj#1
e Multicollinearity between X variables does not bias OLS estimates

o Remember, we pulled another variable out of # into the regression
o |If it were omitted, then it would cause omitted variable bias!

 Multicollinearity does increase the variance of each estimate by

1
F =
(- R}




VIF and Multicollinearity i

1
F =
(1-R?)

. RJ? is the R? from an auxiliary regression of X; on all other regressors (X's)

: Suppose we have a regression with three regressors (k = 3):

Y; = Po + p1X1i + P Xoi + P3X5

o There will be three different RJ? 's, one for each regressor:

R? for X1; = y + yXoi + X
R% for Xo; = o + £1X1i + $H X34
R3 for X3; = no + mXy; + 12X,



VIF and Multicollinearity Il

F = I
(1-R?)

. Rjz is the R* from an auxiliary regression of X; on all other regressors (X's)
e The RJZ tells us how much otherregressors explain regressor X

. : If other X variables explain X; well (high R%), it will be harder to tell how cleanly X; — Y;,
N\
and so var(f3;) will be higher



VIF and Multicollinearity IV

Common to calculate the Variance Inflation Factor (VIF) for each regressor:

VIF

- (1-R%

N\
VIF quantifies the factor (scalar) by which var(f;) increases because of multicollinearity
o e.g. VIF of 2,3, etc. = variance increases by 2x, 3x, etc.

Baseline: RJZ = 0 = nomulticollinearity = VIF = 1 (no inflation)

LargerR]z —> larger VIF

o Rule of thumb: VIF > 10 is problematic



VIF and Multicollinearity V

# scatterplot of X2 on XI Multicollinearity Between Our Independent Variables

ggplot(data=CASchool, aes(x=str,y=el_pct))+ )
geom_point(color="blue" )+
geom_smooth(method="1m", color="red")+
scale_y_continuous(labels=function(x){paste0(x,"%")})+ 75% ;
labs(x = expression(paste("Student to Teacher Ratio, ", X[11)),
y = expression(paste("Percentage of ESL Students, ", X[21)),
title = "Multicollinearity Between Our Independent Variables")+ . A
ggthemes::theme_pander(base_family = "Fira Sans Condensed",
base_size=16)

50%
# Make a correlation table
CASchool %>%
select(testscr, str, el_pct) %>%
cor()

#it testscr str el_pct
## testscr 1.0000000 -0.2263628 -0.6441237
## str -0.2263628 1.0000000 0.1876424
## el_pct -0.6441237 0.1876424 1.0000000

25%

Percentage of ESL Students, X,

(o) - ° .. Oo.'..' P
e Cor(STR, %EL) = -0.644 do e e RS SRS |

14 16 18 20 2 24 26
Student to Teacher Ratio, X;



VIF and Multicollinearity in R

# our multivariate regression
elreg <- lm(testscr ~ str + el _pct,
data = CASchool)

# use the "car" package for VIF function
library("car")

# syntax: vif(lm.object)
vif(elreg)

#H# str el_pct
## 1.036495 1.036495

N\
e var(f}1)on str increases by 1.036 times due to multicollinearity with el _pct

N\
e var(f})on el_pct increases by 1.036 times due to multicollinearity with str




VIF and Multicollinearity inR i

e Let's calculate VIF manually to see where it comes from:

# run auxiliary regression of x2 on x1

auxreg <- lm(el_pct ~ str,
data = CASchool)

# use broom package's tidy() command (cleaner)

library(broom) # load broom

tidy(auxreg) # look at reg output

(Intercept) -19.854055 91626044 -2.166857 0.0308099863
str 1.813719 0.4643735 3.905733 0.0001095165

2 rows




VIF and Multicollinearity in Rl

glance(auxreg) # look at aux reg stats for R"2

0.03520966 0.03290155 17.98259  15.25475 0.0001095165 1 -1808.502 3623.003 3635124

1 row | 1-9 of 12 columns

# extract our R-squared from aux regression (R_j"2)
aux_r_sqg<-glance(auxreg) %>%

select(r.squared)

aux_r_sq # look at 1t

0.03520966




VIF and Multicollinearity inR IV

# calculate VIF manually
our_vif<-1/(1-aux_r_sq) # VIF formula

our_vif

1.036495

1 row

 Again, multicollinearity between the two X variables inflates the variance on each by 1.036
times




VIF and Multicollinearity: Another Example |

What about district expenditures per student?

CASchool %>%
select(testscr, str, expn_stu) %>%

cor()
Hit testscr str expn_stu
## testscr 1.0000000 -0.2263628 0.1912728
##t str -0.2263628 1.0000000 -0.6199821

## expn_stu 0.1912728 -0.6199821 1.0000000



VIF and Multicollinearity: Another Example i

ggplot(data=CASchool, aes(x=str,y=expn_stu))+ . .
geom_point(color="blue")+ *
geom_smooth(method="1m", color="red")+ .
scale_y_continuous(labels = scales::dollar)+ 7,000 < .
labs(x = "Student to Teacher Ratio", ¢ * ; .
y = "Expenditures per Student")+ 3 ., . .
ggthemes: :theme_pander(base_family = "Fira Sans ( g . )
base_size=14) 2 e o
5 $6,000 .' °
o ) ]
@ 0 ® o o® [
= oy ? % e %,
é .o. * . ~’.. ﬁt ... .-i N .. ° °
L%- %% °: .‘J‘..
) o. ° o“
$5,000 o, e
* .°. .: .\o
[ ] ....
$4,000 s
14 16 18 20 22 24 26

Student to Teacher Ratio




VIF and Multicollinearity: Another Example Il

1. cor(Test score, expn) # 0

2. cor(STR, expn) # 0 /
e




VIF and Multicollinearity: Another Example Il

1. cor(Test score, expn) # 0

2. cor(STR, expn) # 0 /
e Omitting expn will bias ,BAl on STR




VIF and Multicollinearity: Another Example Il

1. cor(Test score, expn) # 0
2. cor(STR, expn) # 0
e Omitting expn will bias ﬁ/\l on STR e

N\
e Including expn will not bias 1 on STR,
but will make it less precise (higher
variance)




VIF and Multicollinearity: Another Example Il

 Data tells us little about the effect of a
change in STR holding expn constant
o Hard to know what happens to test
scores when high ST R AND high
expn and vice versa (they rarely
happen simultaneously)!

$7,000

$6,000

Expenditures per Student

$5,000

$4,000

14

16

18 20 »
Student to Teacher Ratio

26



VIF and Multicollinearity: Another Example IV

expreg <- lm(testscr ~ str + expn_stu,

data = CASchool)
expreg %>% tidy()

term estimate

std.error

statistic

<chr> <dbl> «bl>  <dbl>
(Intercept) 675577173851 19562221636 34534788
str 1763215599 0.610913641  -2.886195
expn_stu 0.002486571  0.001823105 1363921

3 rows | 1-4 of 5 columns

expreg %>%
vif()

#it str expn_stu
H# 1.624373 1.624373

e Including expn_stu increases variance
N\ AN
of #1 and 3> by 1.62x (62%)



Multicollinearity Increases Variance

library(huxtable)
huxreg("Model 1" = school_reg,
"Model 2" = expreg,
coefs = c("Intercept" = "(Intercept)",
"Class Size" = "str",
"Expenditures per Student" = "expn_stu"),
statistics = c("N" = "nobs",
"R-Squared" = "r.squared",
"SER" = "sigma"),

number_format = 2)

N\
e We cansee SE(f1) on str increases
from 0.48 to 0.61 when we add
expn_stu

Model 1 Model 2

Intercept 698.93 *** 675.58 ***
(9.47) (19.56)
Class Size -2.28 *** -1.76 **

(0.48) (0.61)

Expenditures per Student 0.00
(0.00)
N 420 420
R-Squared 0.05 0.06
SER 18.58 18.56

***p<0.001;** p<0.01; * p < 0.05.



Perfect Multicollinearity

Perfect multicollinearity is when a regressor is an exact linear function of (an)other
regressor(s)

Sales = ﬂ/t) + ﬂ/\lTemperature C) + ,B/\zTemperature (F)

Temperature (F) = 32 4+ 1.8 % Temperature (C)

cor(temperature (F), temperature (C)) = 1

. Rj2 = 1 isimplying VIF = 1—11 and var(,é\j) = (!

This is fatal for a regression

o A logical impossiblity, always caused by human error



Perfect Multicollinearity: Example

— JA JA JA N\
TestScore; = Py + P1STR; + pr%EL + 3 %EF

e %EL: the percentage of students learning English

e %EF: the percentage of students fluent in English

e EF =100 — EL

e |cor(EF,EL)| =1



Perfect Multicollinearity Example i

# generate %EF variable from %EL
CASchool _ex <- CASchool %>%
mutate(ef_pct = 100 - el_pct)

# get correlation between %EL and %EF
CASchool_ex %>%
summarize(cor = cor(ef_pct, el_pct))

cor




Perfect Multicollinearity Example Il

ggplot(data=CASchool_ex, aes(x=el_pct,y=ef_pct))+ $100
geom_point(color="blue")+
scale_y_continuous(labels = scales::dollar)+
labs(x = "Percent of ESL Students",

y = "Percent of Non-ESL Students")+ N
ggthemes: :theme_pander(base_family = "Fira Sans ( g %75 Ses
. 5] N\
base size=16) = \\
&»
7 AN
5 ~,
=2
S $50 \5\
= N\,
S .
ey %
a.
..‘
$25 .
L)
0 25 50 75

Percent of ESL Students




Perfect Multicollinearity Example IV

mcreg <- lm(testscr ~ str + el_pct + ef_pct, mcreg %>% tidy()
data = CASchool_ex)
summary(mcreg)
# term estimate std.error statistic  p.alue
## Call:
## 1m(formula = testscr ~ str + el_pct + ef_pct, data = CASchool_ex)
4 (Intercept) 686 7.41 92.6 3.87e-280
## Residuals:
#it Min 1Q Median 3Q Max
## -48.845 -10.240 -0.308 9.815 43.461 str 11 0.38 -2.9 0.00398
H#et
## Coefficients: (1 not defined because of singularities) e[_pct -0.65 0.0393 -16.5 1.66e-47
#i#t Estimate Std. Error t value Pr(>|t])
## (Intercept) 686.03225 7.41131 92.566 < 2e-16 x**
## str -1.10130  0.38028 -2.896 0.00398 ** ef_pct
## el_pct -0.64978 0.03934 -16.516 < 2e-16 **=*
## ef_pct NA NA NA NA
Ht ---
## Signif. codes: 0 'x*x' 0.001 '+*' 0.01 '+' 0.05 '.' 0.1 ' ' 1
#it
## Residual standard error: 14.46 on 417 degrees of freedom
## Multiple R-squared: 0.4264, Adjusted R-squared: 0.4237

## F-statistic: 155 on 2 and 417 DF, p-value: < 2.2e-16

e Note R dropsone of the multicollinear regressors (ef pct) if you include both @



A Summary of Multivariate OLS Estimator
Properties




A Summary of Multivariate OLS Estimator Properties

N\
« f; on X; is biased only if there is an omitted variable (Z) such that:

1 cor(Y,Z) #0
2.cor(X;,Z) # 0
o IfZis included and X is collinear with Z, this does not cause a bias

N\ N\
« var[f;] and se[f;] measure precision (or uncertainty) of estimate:

1 SER?
%k
(1 - RJZ) n X var[Xj]

var(Bi] =

]
e VIF from multicollinearity: (1-RD)

0 RJz for auxiliary regression of X; on all other X's

N\
o mutlicollinearity does not bias fj; but raises its variance
o perfect multicollinearity if X's are linear function of others



Updated Measures of Fit




(Updated) Measures of Fit

e Again, how well does a linear model fit the data?

N\
e How much variation in Y; is “explained” by variation in the model (Y;)?

N\
Y, =Y + ib;
N\
I//t\zYi_ i



(Updated) Measures of Fit: SER

e Again, the Standard errror of the regression (SER) estimates the standard error of u

SSE
n—k-—1

SER =

o A measure of the spread of the observations around the regression line (in units of Y), the
average "size" of the residual

e Only new change: divided by n — k — 1 due to use of kK + 1 degrees of freedom to first
estimate fy and then all of the other f5's for the k number of regressors’

T Again, because your textbook defines k as including the constant, the denominator would be n-kinstead of n-k-1.



(Updated) Measures of Fit: R?

ESS

TS$
SSE

—1 - —

TSS
= (rxy)’

R2

N\
o Again, R? is fraction of variation of the model (Y; (“explained sum of squares”) to the
variation of observations of Y; (“total sum of squares”)



(Updated) Measures of Fit: Adjusted R

Problem: R? of a regression increases everytime a new variable is added (it reduces SSE!)

This does not mean adding a variable improves the fit of the model per se, R? gets inflated

We correct for this effect with the adjusted R”:

_5) n—l SSE
=1- X
n—k—1 TSS

There are different methods to compute Rz, and in the end, recall R* was never very
useful, so don't worry about knowing the formula

o Large sample sizes (77) make R? and R’ very close



In R (base)

H
Ht
H
#
H
H
H
H
Ht
H
H
H
H
Ht
H
Ht
H
H
H

o Base R? (R calls it“Multiple R-

Call: "
Caschool) Squared ) went up

Im(formula = testscr ~ str + el_pct, data =

e Adjusted R-squared went down
Residuals:
Min 1Q Median 3Q Max
-48.845 -10.240 -0.308 9.815 43.461
Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 686.03225 7.41131 92.566 < 2e-16 x**

str -1.10130 0.38028 -2.896 0.00398 =*=*

el_pct -0.64978 0.03934 -16.516 < 2e-16 #**x%

Signif. codes: 0 'xxx' 0.001 '**' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Residual standard error: 14.46 on 417 degrees of freedom

Multiple R-squared: 0.4264, Adjusted R-squared: 0.4237
F-statistic: 155 on 2 and 417 DF, p-value: < 2.2e-16




In R (broom)

elreg %>%

glance()
rsquared adj.rsquared sigma statistic pvalue df loglLik AIC BIC deviance dfresidual nobs
0.426 0.424 14.5 155 4.62e- 2 -1.72e+03 3.44e+03 3.46e+03 8.72e+04 417 420
51




