4.1 — Panel Data and Fixed Effects

ECON 480 • Econometrics • Fall 2020

Ryan Safner

Assistant Professor of Economics

- safner@hood.edu
- ryansafner/metricsF20
- metricsF20.classes.ryansafner.com

Types of Data I

• Cross-sectional data: compare different individual i's at same time \bar{t}

state	year	deaths	cell_plans
<fctr></fctr>	<fctr></fctr>	<dbl></dbl>	<dpl></dpl>
Alabama	2012	13.316056	9433.800
Alaska	2012	12.311976	8872.799
Arizona	2012	13.720419	8810.889
Arkansas	2012	16.466730	10047.027
California	2012	8.756507	9362.424
Colorado	2012	10.092204	9403.225
6 rows			

• Time-series data: track same individual \overline{i} over different times t

state	year	deaths	cell_plans
<fctr></fctr>	<fctr></fctr>	<dbl></dbl>	<pre>< d p ></pre>
Maryland	2007	10.866679	8942.137
Maryland	2008	10.740963	9290.689
Maryland	2009	9.892754	9339.452
Maryland	2010	8.783883	9630.120
Maryland	2011	8.626745	10335.795
Maryland	2012	8.941916	10393.295
6 rows			

Types of Data I

• Cross-sectional data: compare different individual i's at same time \bar{t}

• Time-series data: track same individual \bar{i} over different times t

• Panel data: combines these dimensions: compare all individual i's over all time t's

Panel Data I

Panel Data II

state	year
<fctr></fctr>	<fctr></fctr>
Alabama	2007
Alabama	2008
Alabama	2009
Alabama	2010
Alabama	2011
Alabama	2012
Alaska	2007
Alaska	2008
Alaska	2009
Alaska	2010
1-10 of Previous 1 2 3	4 5 6 31 Next

- Panel or Longitudinal data contains
 - repeated observations (t)
 - on multiple individuals (i)

Panel Data II

state	year	deaths
<fctr></fctr>	<fctr></fctr>	<dbl></dbl>
Alabama	2007	18.075232
Alabama	2008	16.289227
Alabama	2009	13.833678
Alabama	2010	13.434084
Alabama	2011	13.771989
Alabama	2012	13.316056
Alaska	2007	16.301184
Alaska	2008	12.744090
Alaska	2009	12.973849
Alaska	2010	11.670893
1-10 of 306 Previous 1 2	3 4	5 6 31 Next

- Panel or Longitudinal data contains
 - repeated observations (t)
 - \circ on multiple individuals (i)
- Thus, our regression equation looks like:

$$\hat{Y}_{it} = \beta_0 + \beta_1 X_{it} + u_{it}$$

for individual *i* in time *t*.

Panel Data: Our Motivating Example

state	year	deaths
<fctr></fctr>	<fctr></fctr>	<dbl></dbl>
Alabama	2007	18.075232
Alabama	2008	16.289227
Alabama	2009	13.833678
Alabama	2010	13.434084
Alabama	2011	13.771989
Alabama	2012	13.316056
Alaska	2007	16.301184
Alaska	2008	12.744090
Alaska	2009	12.973849
Alaska	2010	11.670893
1-10 of 306 Previous 1 2	3 4	5 6 31 Next

Example: Do cell phones cause more traffic fatalities?

- No measure of cell phones used while driving
 - cell_plans as a proxy for cell phone usage
- State-level data over 6 years

The Data I

glimpse(phones)

```
## Rows: 306
## Columns: 8
## $ vear
                   <fct> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2...
## $ state
                   <fct> Alabama, Alaska, Arizona, Arkansas, California, Colorad...
## $ urban percent <dbl> 30, 55, 45, 21, 54, 34, 84, 31, 100, 53, 39, 45, 11, 56...
## $ cell plans
                   <dbl> 8135.525, 6730.282, 7572.465, 8071.125, 8821.933, 8162....
## $ cell ban
                   <fct> 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0...
## $ text ban
                   <fct> 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0...
## $ deaths
                   <dbl> 18.075232, 16.301184, 16.930578, 19.595430, 12.104340, ...
## $ year num
                   <dbl> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2...
```

The Data II

phones %>%
 count(state)

state	n
<fctr></fctr>	<int></int>
Alabama	6
Alaska	6
Arizona	6
Arkansas	6
California	6
Colorado	6
Connecticut	6
Delaware	6
District of Columbia	6
Florida	6

phones %>%
 count(year)

year	n
<fctr></fctr>	<int></int>
2007	51
2008	51
2009	51
2010	51
2011	51
2012	51
6 rows	

The Data III

phones %>%
 distinct(state)

state Alabama Alaska Arizona **Arkansas** California Colorado Connecticut Delaware **District of Columbia** Florida

phones %>%
 distinct(year)

year	
<fctr></fctr>	
2007	
2008	
2009	
2010	
2011	
2012	
6 rows	

The Data IV

	States	Years
	<int></int>	<int></int>
	51	6
1 row		

The Data: With plm


```
# install.packages("plm")
library(plm)

pdim(phones, index=c("state", "year"))

## Balanced Panel: n = 51, T = 6, N = 306
```

- plm package for panel data in R
- pdim() checks dimensions of panel dataset
 - index= vector of "group" & "year"variables
- Returns with a summary of:
 - o n groups
 - T periods
 - N total observaitons

Pooled Regression I

• What if we just ran a standard regression:

$$\hat{Y}_{it} = \beta_0 + \beta_1 X_{it} + u_{it}$$

- *N* number of *i* groups (e.g. U.S. States)
- *T* number of *t* periods (e.g. years)
- This is a pooled regression model: treats all observations as independent

Pooled Regression II


```
pooled <- lm(deaths ~ cell_plans, data = phones)
pooled %>% tidy()
```

term	estimate	std.error	statistic	p.value
<chr></chr>				<pre><dbl></dbl></pre>
(Intercept)	17.3371034167	0.975384504	17.774635	5.821724e-49
cell_plans	-0.0005666385	0.000106975	-5.296926	2.264086e-07

2 rows

Pooled Regression III

Pooled Regression III


```
ggplot(data = phones)+
  aes(x = cell_plans,
        y = deaths)+
  geom_point()+
  geom_smooth(method = "lm", color = "red")+
  labs(x = "Cell Phones Per 10,000 People",
        y = "Deaths Per Billion Miles Driven")+
  theme_bw(base_family = "Fira Sans Condensed",
        base_size=14)
```


Recap: Assumptions about Errors

- Recall the 4 critical assumptions about u:
- 1. The expected value of the residuals is 0

$$E[u] = 0$$

2. The variance of the residuals over X is constant:

$$var(u|X) = \sigma_u^2$$

3. Errors are not correlated across observations:

$$cor(u_i, u_j) = 0 \quad \forall i \neq j$$

4. There is no correlation between X and the error term:

$$cor(X, u) = 0$$
 or $E[u|X] = 0$

Biases of Pooled Regression

$$\hat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \epsilon_{it}$$

- Assumption 3: $cor(u_i, u_j) = 0 \quad \forall i \neq j$
- Pooled regression model is **biased** because it ignores:
 - \circ Multiple observations from same group i
 - Multiple observations from same time *t*
- Thus, errors are serially or auto-correlated; $cor(u_i, u_j) \neq 0$ within same i and within same t

Biases of Pooled Regression: Our Example

$$\widehat{\text{Deaths}}_{it} = \beta_0 + \beta_1 \text{ Cell Phones}_{it} + u_{it}$$

- Multiple observations from same state i
 - \circ Probably similarities among u for obs in same state
 - Residuals on observations from same state are likely correlated
- Multiple observations from same year t
 - \circ Probably similarities among u for obs in same year
 - Residuals on observations from same year are likely correlated

Example: Consider Just 5 States


```
phones %>%
 filter(state %in% c("District of Columbia",
                      "Marvland". "Texas".
                      "California", "Kansas")) %>%
ggplot(data = .)+
  aes(x = cell plans,
     y = deaths,
     color = state)+
 geom_point()+
  geom smooth(method = "lm")+
  labs(x = "Cell Phones Per 10,000 People",
       y = "Deaths Per Billion Miles Driven",
       color = NULL)+
  theme_bw(base_family = "Fira Sans Condensed",
           base_size=14)+
  theme(legend.position = "top")
```


Example: Consider Just 5 States


```
phones %>%
 filter(state %in% c("District of Columbia",
                      "Marvland". "Texas".
                      "California", "Kansas")) %>%
ggplot(data = .)+
  aes(x = cell plans.
     y = deaths,
      color = state)+
  geom_point()+
  geom smooth(method = "lm")+
  labs(x = "Cell Phones Per 10,000 People",
       y = "Deaths Per Billion Miles Driven",
       color = NULL)+
  theme bw(base family = "Fira Sans Condensed",
           base_size=14)+
 theme(legend.position = "none")+
  facet wrap(~state, ncol=3)
```


Look at All States


```
ggplot(data = phones)+
  aes(x = cell_plans,
        y = deaths,
        color = state)+
  geom_point()+
  geom_smooth(method = "lm")+
  labs(x = "Cell Phones Per 10,000 People",
        y = "Deaths Per Billion Miles Driven",
        color = NULL)+
  theme_bw(base_family = "Fira Sans Condensed")+
  theme(legend.position = "none")+
  facet_wrap(~state, ncol=7)
```


The Bias in our Pooled Regression

$$\widehat{\text{Deaths}}_{it} = \beta_0 + \beta_1 \text{ Cell Phones}_{it} + \mathbf{u}_{it}$$

• Cell Phones_{it} is **endogenous**:

$$cor(\mathbf{u}_{it}, \text{cell phones}_{it}) \neq 0$$
 $E[\mathbf{u}_{it}|\text{cell phones}_{it}] \neq 0$

- Things in u_{it} correlated with Cell phones_{it}:
 - infrastructure spending, population, urban vs. rural, more/less cautious citizens, cultural attitudes towards driving, texting, etc
- A lot of these things vary systematically by State!
 - $\circ cor(\mathbf{u}_{it_1}, \mathbf{u}_{it_2}) \neq 0$
 - Error in State i during t_1 correlates with error in State i during t_2
 - things in State that don't change over time

Fixed Effects Model

Fixed Effects: DAG

- A simple pooled model likely contains lots of omitted variable bias
- Many (often unobservable) factors that determine both Phones & Deaths
 - Culture, infrastructure, population, geography, institutions, etc

Fixed Effects: DAG

- A simple pooled model likely contains lots of omitted variable bias
- Many (often unobservable) factors that determine both Phones & Deaths
 - Culture, infrastructure, population, geography, institutions, etc
- But the beauty of this is that most of these factors systematically vary by U.S. State and are stable over time!
- We can simply "control for State" to safely remove the influence of all of these factors!

Fixed Effects: Decomposing \mathbf{u}_{it}

- Much of the endogeneity in X_{it} can be explained by systematic differences across i (groups)
- Exploit the systematic variation across groups with a fixed effects model
- *Decompose* the model error term into two parts:

$$\mathbf{u}_{it} = \alpha_i + \epsilon_{it}$$

Fixed Effects: α_i

• *Decompose* the model error term into two parts:

$$\mathbf{u}_{it} = \boldsymbol{\alpha}_i + \boldsymbol{\epsilon}_{it}$$

- α_i are group-specific fixed effects
 - \circ group i tends to have higher or lower \hat{Y} than other groups given regressor(s) X_{it}
 - \circ estimate a separate $lpha_i$ for each group i
 - essentially, estimate a separate constant (intercept) for each group
 - \circ notice this is stable over time within each group (subscript only i, no t)
- This includes all factors that do not change within group i over time

Fixed Effects: ϵ_{it}

$$\mathbf{u}_{it} = \boldsymbol{\alpha}_i + \boldsymbol{\epsilon}_{it}$$

- ϵ_{it} is the remaining random error
 - As usual in OLS, assume the 4 typical assumptions about this error:

$$\circ E[\epsilon_{it}] = 0$$
, $var[\epsilon_{it}] = \sigma_{\epsilon}^2$, $cor(\epsilon_{it}, \epsilon_{jt}) = 0$, $cor(\epsilon_{it}, X_{it}) = 0$

- ϵ_{it} includes all other factors affecting Y_{it} not contained in group effect α_i
 - i.e. differences within each group that change over time
 - \circ Be careful: X_{it} can still be endogenous from other factors!

Fixed Effects: New Regression Equation

$$\widehat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \alpha_i + \epsilon_{it}$$

- We've pulled α_i out of the original error term into the regression
- Essentially we'll estimate an intercept for each group (minus one, which is β_0)
 - avoiding the dummy variable trap
- Must have multiple observations (over time) for each group (i.e. panel data)

Fixed Effects: Our Example

$$\widehat{\text{Deaths}}_{it} = \beta_0 + \beta_1 \text{Cell phones}_{it} + \alpha_i + \epsilon_{it}$$

- α_i is the State fixed effect
 - \circ Captures everything unique about each state i that does not change over time
 - culture, institutions, history, geography, climate, etc!
- There could *still* be factors in ϵ_{it} that are correlated with Cell phones_{it}!
 - things that do change over time within States
 - o perhaps individual States have cell phone bans for *some* years in our data

Estimating Fixed Effects Models

$$\widehat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \alpha_i + \epsilon_{it}$$

- Two methods to estimate fixed effects models:
- 1. Least Squares Dummy Variable (LSDV) approach
- 2. De-meaned data approach

Least Squares Dummy Variable Approach

Least Squares Dummy Variable Approach

$$\widehat{Y_{it}} = \beta_0 + \beta_1 X_{it} + \beta_2 D_{1i} + \beta_3 D_{2i} + \dots + \beta_N D_{(N-1)i} + \epsilon_{it}$$

- A dummy variable $D_i = \{0, 1\}$ for each possible group
 - $\circ = 1$ if observation it is from group i, otherwise = 0
- If there are *N* groups:
 - \circ Include N-1 dummies (to avoid **dummy variable trap**) and β_0 is the reference category
 - So we are estimating a different intercept for each group
- Sounds like a lot of work, automatic in R

[†] If we do not estimate β_0 , we could include all N dummies. In either case, β_0 takes the place of one category-dummy.

Least Squares Dummy Variable Approach: Our Example

Example:

$$\widehat{\text{Deaths}}_{it} = \beta_0 + \beta_1 \text{Cell Phones}_{it} + \text{Alaska}_i + \dots + \text{Wyoming}_i$$

• Let Alabama be the reference category (β_0) , include all other States

Our Example in R I

$$\widehat{\text{Deaths}}_{it} = \beta_0 + \beta_1 \text{Cell Phones}_{it} + \text{Alaska}_i + \dots + \text{Wyoming}_i$$

- If state is a factor variable, just include it in the regression
- \bullet R automatically creates N-1 dummy variables and includes them in the regression
 - Keeps intercept and leaves out first group dummy

Our Example in R II


```
fe_reg_1 <- lm(deaths ~ cell_plans + state, data = phones)
fe_reg_1 %>% tidy()
```

term	estimate	std.error	statistic	p.value
<chr></chr>				<pre></pre>
(Intercept)	25.507679925	1.0176400289	25.06552337	1.241581e-70
cell_plans	-0.001203742	0.0001013125	-11.88147584	3.483442e-26
stateAlaska	-2.484164783	0.6745076282	-3.68293060	2.816972e-04
stateArizona	-1.510577383	0.6704569688	-2.25305643	2.510925e-02
stateArkansas	3.192662931	0.6664383936	4.79063476	2.829319e-06
stateCalifornia	-4.978668651	0.6655467951	-7.48056889	1.206933e-12
stateColorado	-4.344553493	0.6654735335	-6.52851432	3.588784e-10
stateConnecticut	-6.595185530	0.6654428902	-9.91097152	8.698802e-20
stateDelaware	-2.098393628	0.6666483193	-3.14767707	1.842218e-03
stateDistrict of Columbia	6.355790010	1.2897172620	4.92804911	1.499627e-06
1-10 of 52 rows			Previous 1	2 3 4 5 6 Next

De-meaned Approach

De-meaned Approach I

- Alternatively, we can control our regression for group fixed effects without directly estimating them
- We simply de-mean the data for each group
- For each group *i*, find the means (over time, *t*):

$$\bar{Y}_i = \beta_0 + \beta_1 \bar{X}_i + \bar{\alpha}_i + \bar{\epsilon}_{it}$$

- Where:
 - \circ \bar{Y}_i : average value of Y_{it} for group i
 - $\circ \; ar{X}_i$: average value of X_{it} for group i
 - $\circ \ \bar{\alpha}_i$: average value of α_i for group $i \ (= \alpha_i)$
 - $\circ \bar{\epsilon}_{it} = 0$, by assumption 1

De-meaned Approach II

$$\widehat{Y_{it}} = \beta_0 + \beta_1 X_{it} + u_{it}$$

$$\bar{Y}_i = \beta_0 + \beta_1 \bar{X}_i + \bar{\alpha}_i + \bar{\epsilon}_i$$

Subtract the means equation from the pooled equation to get:

$$Y_i - \bar{Y}_i = \beta_1 (X_{it} - \bar{X}_i) + \tilde{\epsilon}_{it}$$
$$\tilde{Y}_{it} = \beta_1 \tilde{X}_{it} + \tilde{\epsilon}_{it}$$

- ullet Within each group i, the de-meaned variables $ilde{Y}_{it}$ and $ilde{X}_{it}$'s all have a mean of 0^{\dagger}
- Variables that don't change over time will drop out of analysis altogether
- Removes any source of variation **across** groups to only work with variation **within** each group

[†] Recall **Rule 4** from the <u>2.3 class notes</u> on the Summation Operator: $\sum (X_i - \bar{X}) = 0$

De-meaned Approach III

$$\tilde{Y}_{it} = \beta_1 \tilde{X}_{it} + \tilde{\epsilon}_{it}$$

- Yields identical results to dummy variable approach
- More useful when we have many groups (would be many dummies)
- Demonstrates **intuition** behind fixed effects:
 - Converts all data to deviations from the mean of each group
 - All groups are "centered" at 0
 - Fixed effects are often called the "within" estimators, they exploit variation within groups, not across groups

De-meaned Approach IV

- We are basically comparing groups to themselves over time
 - o apples to apples comparison
 - e.g. Maryland in 2000 vs. Maryland in 2005
- Ignore all differences between groups, only look at differences within groups over time

De-Meaning the Data in R I

state		avg_death:	5	a	vg_phones
<fctr></fctr>					<dbl></dbl>
Alabama		14.78671	1		8906.370
Alaska		13.61295	3		7817.759
Arizona		14.24982	5		8097.482
Arkansas		17.54388	1		9268.153
California		9.65971	2		9029.594
Colorado		10.35140	5		8981.762
Connecticut		8.14173	9		8947.729
Delaware		12.20961)		9304.052
District of Columbia		8.01589	5		19811.205
Florida		13.54463	5		9078.592
1-10 of 51 rows	Previous	1 2 3	4	5	6 Next

De-Meaning the Data in R II


```
ggplot(data = means state)+
  aes(x = fct reorder(state, avg deaths),
      y = avg deaths,
     color = state)+
  geom_point()+
  geom\_segment(aes(y = 0,
                   yend = avg_deaths,
                   x = state,
                   xend = state))+
  coord flip()+
  labs(x = "Cell Phones Per 10,000 People",
       y = "Deaths Per Billion Miles Driven",
       color = NULL)+
  theme_bw(base_family = "Fira Sans Condensed",
           base_size=10)+
  theme(legend.position = "none")
```


Visualizing "Within Estimates" for the 5 States

Visualizing "Within Estimates" for All 51 States

De-meaned Approach in R I

- The plm package is designed for panel data
- plm() function is just like lm(), with some additional arguments:
 - index="group_variable_name" set equal to the name of your factor variable for the groups
 - model= set equal to "within" to use fixed-effects (within-estimator)

De-meaned Approach in R II

fe_reg_1_alt %>% tidy()

term	estimate	std.error	statistic	p.value
<chr></chr>				<pre><dpl></dpl></pre>
cell_plans	-0.001203742	0.0001013125	-11.88148	3.483442e-26
1 row				

- State fixed effect controls for all factors that vary by state but are stable over time
- But there are still other (often unobservable)
 factors that affect both Phones and Deaths, that
 don't vary by State
 - The country's macroeconomic performance, federal laws, etc

- State fixed effect controls for all factors that vary by state but are stable over time
- But there are still other (often unobservable)
 factors that affect both Phones and Deaths, that
 don't vary by State
 - The country's macroeconomic performance, federal laws, etc
- If these factors systematically vary over time, but are the same by State, then we can "control for Year" to safely remove the influence of all of these factors!

- A one-way fixed effects model estimates a fixed effect for groups
- Two-way fixed effects model estimates fixed effects for both groups and time periods

$$\hat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \alpha_i + \theta_t + \nu_{it}$$

- α_i : group fixed effects
 - accounts for time-invariant differences across groups
- θ_t : time fixed effects
 - accounts for group-invariant differences over time
- ν_{it} remaining random error

Two-Way Fixed Effects: Our Example

$$\widehat{\text{Deaths}}_{it} = \beta_0 + \beta_1 \text{Cell phones}_{it} + \alpha_i + \theta_t + \nu_{it}$$

- α_i : State fixed effects
 - \circ differences **across states** that are **stable over time** (note subscript i only)
 - e.g. geography, culture, (unchanging) state laws
- θ_t : Year fixed effects
 - differences over time that are stable across states (note subscript t only)
 - o e.g. economy-wide macroeconomic changes, *federal* laws passed

Visualizing Year Effects I

year	avg_deaths	avg_phones
<fctr></fctr>	<dbl></dbl>	<pre><dbl></dbl></pre>
2007	14.00751	8064.531
2008	12.87156	8482.903
2009	12.08632	8859.706
2010	11.61487	9134.592
2011	11.36431	9485.238
2012	11.65666	9660.474
6 rows		

Visualizing Year Effects II


```
ggplot(data = phones)+
  aes(x = year,
      y = deaths)+
  geom point(aes(color = year))+
  # Add the yearly means as black points
  geom_point(data = means_year,
             aes(x = year,
                 y = avg_deaths),
             size = 3,
             color = "black")+
  geom_path(data = means_year,
            aes(x = year,
                y = avg_deaths),
            size = 1)+
  theme_bw(base_family = "Fira Sans Condensed",
           base_size = 14)+
  theme(legend.position = "none")
```


Estimating Two-Way Fixed Effects

$$\widehat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \alpha_i + \theta_t + \nu_{it}$$

- As before, several equivalent ways to estimate two-way fixed effects models:
- 1) **Least Squares Dummy Variable (LSDV) Approach**: add dummies for both groups and time periods (separate intercepts for groups and times)
- 2) Fully De-meaned data:

$$\tilde{Y}_{it} = \beta_1 \tilde{X}_{it} + \tilde{\nu}_{it}$$

where for each variable: $v\tilde{a}r_{it} = var_{it} - \overline{var}_t - \overline{var}_i$

3) **Hybrid**: de-mean for one effect (groups or years) and add dummies for the other effect (years or groups)

LSDV Method

term	estimate	std.error	statistic	p.value
<chr></chr>				<dbl></dbl>
(Intercept)	18.9304707399	1.4511323962	13.0453092	5.427406e-30
cell_plans	-0.0002995294	0.0001723149	-1.7382677	8.339982e-02
stateAlaska	-1.4998292482	0.6241082951	-2.4031554	1.698648e-02
stateArizona	-0.7791714713	0.6113519094	-1.2745057	2.036724e-01
stateArkansas	2.8655344756	0.5985062952	4.7878101	2.895040e-06
stateCalifornia	-5.0900897113	0.5956293282	-8.5457338	1.299236e-15
stateColorado	-4.4127241692	0.5953924847	-7.4114543	1.945083e-12
stateConnecticut	-6.6325834801	0.5952933996	-11.1417051	1.169797e-23
stateDelaware	-2.4579829953	0.5991822226	-4.1022295	5.546475e-05
stateDistrict of Columbia	-3.5044963616	1.9710939218	-1.7779449	7.663326e-02
1-10 of 57 rows			Previous 1 2	3 4 5 6 Next

With plm

term	estimate	std.error	statistic	p.value
<chr></chr>				<pre><dpl></dpl></pre>
cell_plans	-0.001203742	0.0001013125	-11.88148	3.483442e-26
1 row				

• plm() command allows for multiple effects to be fit inside index=c("group", "time")

Adding Covariates

- State fixed effect absorbs all unobserved factors that vary by state, but are constant over time
- Year fixed effect absorbs all unobserved factors that vary by year, but are constant over States
- But there are still other (often unobservable) factors that affect both Phones and Deaths, that vary by State and change over time!
 - Some States change their laws during the time period
 - State *urbanization* rates *change* over the time period
- We will also need to control for these variables (not picked up by fixed effects!)
 - Add them to the regression

Adding Covariates I

$$\widehat{\text{Deaths}}_{it} = \beta_1 \text{Cell Phones}_{it} + \alpha_i + \theta_t + \text{urban pct}_{it} + \text{cell ban}_{it} + \text{text ban}_{it}$$

- Can still add covariates to remove endogeneity not soaked up by fixed effects
 - factors that change within groups over time
 - e.g. some states pass bans over the time period in data (some years before, some years after)

Adding Covariates II

term	estimate	std.error	statistic	p.value
<chr></chr>	<qpf></qpf>	<qpf></qpf>	<dpl></dpl>	<dpl></dpl>
cell_plans	-0.0003403735	0.0001729402	-1.968157	0.05017303
text_ban1	0.2559261569	0.2221923049	1.151823	0.25051208
urban_percent	0.0131347657	0.0111986138	1.172892	0.24197354
cell_ban1	-0.6797956522	0.4029491232	-1.687051	0.09286115

4 rows

Comparing Models

	Pooled	State Effects	State & Year Effects	With Controls
Intercept	17.3371 ***	25.5077 ***	18.9305 ***	
	(0.9754)	(1.0176)	(1.4511)	
Cell phones	-0.0006 ***	-0.0012 ***	-0.0003	-0.0003
	(0.0001)	(0.0001)	(0.0002)	(0.0002)
Cell Ban				-0.6798
				(0.4029)
Texting Ban				0.2559
				(0.2222)
Urbanization Rate				0.0131
				(0.0112)
N	306	306	306	306
R-Squared	0.0845	0.9055	0.9259	0.0329
SER	3.2791	1.1526	1.0310	